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RTD TDR-63-3096, Voll

FOREWORD

This report is one of five volumes presenting the re .lts of a series of

studies rarried out for the Air Force by General Americ.. Transportation

Corporation and Newmark-Hansen Associates. The five volumes comprise
RTD TDR-63-3096 and are organized as follows:

Vol,

Vol.

.1

LI

. UI

v

v

Structure Interior Motions Dur to Air Blast Induced
Ground Shock

Structure Interior Motions Due to Directly Transmitted
Ground Shock

Response Spectra of Single-Degree-of-Freedom Elastic

_and Inelastic Systems . .. .

Responsc Spectra of Two-Degree~of-Freedom Ela. :ic
and Inelastic Systems

Response Spectra of Multi-Degree~of-Freedom Elastic
Systems

Volumes I and II are authored b; General American Transportation

Corporation. Volumes IlI, IV, and V are authored by Newmark-Hansen and

Associates. Volumes II, 1V, and V will be published early in 1965.

Acknowledgment is made to Captain H. Auld, Captain D. H, Merkle,

and Lt J, F, Floxy of AFWL for their continued cooperation during the

course of the project and to Dr. S. Raynor of Northwesterr University who

serves as consultant to MRD of General American Transportation Corporation.
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RTD TDR-63-3096, Vol l

ABSTRACT

The primary purpose of this report is to provide guidance for designers
of shock isolation syvstems during the initial phases of design. Volume I
presents methods for estimating eppropriate free field waveforms and the
influence of soil-structure interaction upor interior structure motion. Volume
11T of RTD TDR-63-3096, prepared by Newmark-Hansen Associates, presents
methods for synthesizing peak relative response spectra from the spectra

characteristic of pulses of simpl.e shape.

The inherent error in shock isolation design is at least +20 percent; to

reduce this, much rnore soil test data than 1s now available will be required.

Further, based on purely theoretical arguments, shock isoiation per se can
be eliminated for much equlpmentuseid in hard installations. If isolators are
required they should be designed as low frequency systems that impose one g
acceleration on the isolated equipment. Increase of the acceleration to be
tolerated by the equipment will, in the great majority of instances, reduce

neither the rattle space required nor the isolator cost,

Methods for making the necessary computations are given,
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LIST OF SYMBOLS

See separate list for symbols used in Appendix A.
are given in the appendix list of symbols.

structure surface aresa

i
wave propagation velocity n
average compression wave n
pro.agation velocity
sonic velocity of shell material n
depth to bedrock P
flexural rigidity PO
Young's modulus R
kinetic energy r
potential energy 5
potential energy increment
T, (t)
Spring force
t
frequency, cycles per second
t
acceleration of gravity d
t
shell thickness ¥
t
impulse r
ts
subscript, ith mode
ta
soil resistance factor
t*
Sprir.z constant
wave path length
U
subtangent wave length
)
mass
v
shell unit mass
W

xi

pulse decay ratio

All vectors

Norm, ith mode
acceleraticn in gravity units

pulse vropagation distance
in initial ypulse widths

subscript, nth mode.
pressure

peak overpressure
structure radius
pulse coordinate in
initial pulse widths

response amplitude of ith mode

time

duration of wave

rise time

period, rigid mode
subtangent durstion
period, deformational mode
time requiied for peak
pressure to attenuate to a
given level

soil or air shock velocity
structure volume

velocity

weight
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x,y,z -
Q. =
B -
'y =
5 =
o =
[ =
A =
- v =
p =
7,(€) =
Q, =
1
(Di =
E,n, 8~

Particular values of various quantities are denoted by subscripts

LIST OF SYMBOLS' (CONTINUED)

displacements, as
defined in text

acceleration

factor defined in text
soil density.

percyclic damping constant
damping factor

unit strain

a characteristic length
for shells

Poisson's Ratic
soil unit mass
forcirg function for ith mode

natural frequency of ith
mode in soil

natural frequency of ith
mode in vacuum

rectangular coordinate svet-nm

asterisks, and carats as defined in the text.
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LIST OF SYMBOLS FOR APPENDIX

Scalars
. A = tructure ares
- Ai = amplitude constant of ith mode
c = constants defined in Table B.1l
c = wave pHropagation velocity
1 = compression seismic velocity
Cs = shear seismic velocity
D = proportionality constant
D = flexural rigidity
L] v
. - E = Young's Modulus
h = shell thickness
) i = model index
3 = modal index
&
K,k = soil resistance factors
m = unit mass of shell
‘ n = modal index
' o N, = modal norm
M ) At
’ R = ratio of soil deformation
pressure to structure
deformatinon pressure
. : s (t) = rigid bndy mode emplitude
. . r -
s ‘ function
- - Ti(t) = modal amplitude function
i .
v ' = structure volume
B = defined in Figure A.l

xiii

damping constant for
ith mode

arbitrary phase angle
for ith meode

Poisson's Ratio
so0il mass density

forcing function for
ith mode

natural frequency of
ith mode in soil

‘natural freguency of =

ith mode in vacuum
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LIST OF SYMBOLS FOR APPENDIX A (CONTINUED)

Vectors
Z = tangential unit vector
n =  normal unit vector
P = pressure
Sl - input pressure
u = absolute structure displacement
w = relative structure displacement
z = absolute free field displacement
i = normal mode
w vector defined-in text -
IF.'Z = vector defined in text
Misc,
L{ ) = linear vector operator of spacial varicbles
Bn( ) = boundary conditions
V2 = Laplacian opera’ or
; = free field pressure teasor




missile have been established. The ineide diameter of the silo within which

the miss?le will be house may depen? more strongly on the rattle space required
by the missile and its 1solation system than upon any other single factor save
missile envelope diameter. The cost of the missile silo and associated door

and operating equipment veries somewhere between the square and the cube of

the silo diameter, other factors being equal. Therefore the shock isolation
designer is placed fn the difficult position of having to establish space re-
quirements that are adequate for isolation but held to a minimum in order to
keep costs down at a time when he has little detailed information upon which

to base his cstimates. The primary purpose of this report is to provide methods
that will assist the shock isclation designer in arriving at conclusions to this

and similar problems.

Two general avenues of approach were open at the outset of the work herein

reported:

1. Formulas and the necessary assocciated compendium of data could be
prepared so that any problem likely to face a designer would have
been considered and graphs presented covering suitable ranges of

the various parameters.

¢. Methods could be developed the use of which would enable the
dAesigner to consider the particular problem he faced from basic
principles and to expeditiously carry out the design without

reliance upon a compendium cf previously ~omputed datsa.

ro




Both approaches were considercd on the project but it became evident that

Rz R e Mz‘.ﬁ: ’é m‘:‘; h&

the latter approach was by far the more desirable. Shock isolation design for

the suspension system of a large liquid fueled missile and the design of isolators

A LIV ey

for a ruggedized item of electronic equipment iounted on a wall bracket have
little in common other than the name "shock isolation and the fundesmental laws

of mechanics governing the design. The compendium required for the first apprcach

vould have been truly messive. Further, it developed that, within enzineering

accuracy, the second method became quite practical.

The vague ~oncept "shock sensitivity of equipment” in the past has received
considerable attention. Nevertheless at the present time it is practically
impossiblic o clearly define the shock sensitivity of an individual item of
eqiipment ‘et alone to formulate a general sensitivity criterion with sufficient
accuracy and mathematical precision to enchle deduction of shock isolation
criteria. The complexities of equipment used are so great and so varied that
efforts in this direction hsve heen unavailing. However, at least one precise
statement fundamental to shock sensitivity cian be made: damage to an equipment
element is induced when either the total energy communicated to the element or
the rate of flow of energy delivered to the element exceeds certain critical
values. Often, of course, it is a practical impossibility to distinguish the

critical energy component and/or its critical level. Knowing, however, that the

damaging sgent ultimately is energy, regardless of how described, we can gain
considerable insight into the overall shock isolation problem by considering the

path followed by the energy leeving an exploding weapon and ultimately arriving

at a sensitive element of equipment.

-
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Figure 1.1 shows two block diagrams representing, in a general way, the

propagation of energy originating at the detonation of a nuclear weapon through
the blast enviromment to shock sensitive equipment. One block diagram repre-
sents the conditicns for whicu we have da.a obtained at the nuclear weapons
test sites; the second represents the situation at a proposed installation site.
Consider, first, the test site. Eigut blocks are shown. Of these we have
factual infcrmation for three blocks; yield, the detonation parameters, range
and height of burst; the free field gage outputs and, in a few instances,
response gage outputs. We have partial infomation for a fourth block, the
soil characteristics and depth at which measurements were taken. It shovld be
observed that the output ~f the free field gage is not what might be termed
the true free field underground blast motion condition. It is the output of

a gage which, by its very precence, modifies the free field that would exist in
its irmmediate viecinity if the gage were not there. Further, it is the output
measured over a relatively suall area, perhaps that of a cylinder a few inches
in dismeter or less. Portions of the gage output would be substantially the
same if the gage were moved significant distances, with range, soil parameters
and depth held constant. Other portions of its output, however, would vary
markedly if the gage were moved only a few feet or even, in some cases, a fevw
inches. These latter portions can be accounted for in any design procedure

only on a statistical basis, if they are indeed significant.

At a weapons system installation, it should be ncted, the ener sy released
by detonation of the bomb is modifisd at least four times before reacning the

portion of the equipment subject to damage. The energy 1s first converted from

+
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the pressure-volume andl kinetic energy of the bomb fragments an. air-soil

environment into the energy that we term the free field pressure. This, in

turn, mey or may not be markedly modified by any structure buricd in the free
field. Then the energy is further greatly modified by any isolator provided
within the structure between the structure itseif and the equipment mounted
therein. It is to gain this modification that the isclator is previded.

Finally, in conrsing through the equipment, that portion of the energy passing
through the isolator is again further modified significantly before reaching

the particular element of the equipment at which damage might be caused. Our
problem is tc deduce from the limited informstion represented by the shaded
blocks in the test site block disgram a series of criteria, theories, and design .
formulas which will enable us, within an acceptable degree of accuracy, to follow
the energy through the block diegram repre..nting conditions at an installation
site and arrive at meaningful criteria for the design of isolators of minimum
size and cost but adequate mechanical properties to insure that the cyuipment

mounted therein survives the blast.

Since the energy successively pesses through some four major modifications
before arriving at the pcint at which it can cause damage, it is evident that
negiect of one of the four can introduce more error in our overall design procedure
than might be e”imirs*e) by refined design of any of the other energy conversions.
In particular, the block diagram shown in Figure 1.2 which has tacicly been
assuned for some hard structure sheck isolation designs, can be a poor repre-
sentation of the overall problem. The methods of extrapolating test site gage

records to conditions at an installstion site are questionable for large structures.
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The point of departure for the project reported hereln was Block 3, the

free field motion history of Figure 1l.1l. The energy chain from the bomb burst
to free field is an extremely complex area that is recelving a great deal of
effort by a number of investigators at the present time. For this project we
have made use of information presently available to describe genersally the

free *ield motion history that would exist wider any particular set of circum-
stances. However, we have not imposcd the requirement that the free field data
be of any particular form or characterizable by any specific mathematical
expression. Thus, as further information is developed on the nature of the

free field this can be fit into the shock isolation design scheme presented.

A substantial portion of the effort carried out on the project is concerned
with the second energy change represented by block 4 of Figure l.i,hfh;ré§il
structure interaction. Even though a structure buried in soll remains substantially
rigid during ground motion its presence has a significant effect on the total energy
available to the isolator and isolated equipment and possibly even more influence
on ti'e rate of delivery of this energy. 7T1he naturael vehicle for carvrying out

thesc computations is the normal mode method which is discussed in considerable

dztail in Appendix A of this report.

In the following subsections particular aspects of the isolation problem

are discussed in nonmathematical terms.




1.1 Normal Modes, Damping and Coupling

1.1 1 Undamped Modes

The vibration of an undamped linear system, that is a system in which all
displacements are proportional to the loads, free of damping, always can be
expressed as an infinite series of vibrations of certain specisl configurations

termed "normal modes". This is true no matter how complex the overall system of

vitration is and is independent of whether *he vibration is free or forced;
indeed for free vibration each modal motion consists of a particular geometric
configuration, each point of which oscillates harmonically in phase with all

other points at & specific frequency characteristic of the mode. Such a vibra-

tion would continue indefinitely. The total enc. gy of eachrmmqe wouldmpeuw
independent of time, and there would be no interchange of energy hetween the
various excited modes. It is this energy independence quality that vitimately
defines the varicus modal configurations. At the maximum displacement of a mode
all of its energy would be potential, stored in the system elements. A quarte-
weriod later all of the energy would be kinetic. For this reason this energy

.& termed th- lating erergy of the mode.

When tae mathematics are carried out the amplitude of the free vibration of
a normal mode is found to catisfy the same equation as a simple mass-spring sys*em,

1.€-,

¥ +0°x =0 (1.1)
n n'n
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where

X, 1s the amplitude of the nth mode, a function of time

w, is the natural frequency of the nth mode.

If a distributed system of forces is applied to the structure, vibration
again will consist of the infinite series of normal modes. However, in this
instance each mode will not vibrate harmonicelly, rather the mcdal amplitude

will be given by solution of Equation (1.2).
%+ 0% =f (1.2)
n nn n ’
This equation is seen tc be analugous to the equation of forced motion for a

mass-spring system where the function fn fills the role of forcing function.

"It will be found that £ is equal to the rate of energy delivefy to the nth

mode by the distributed forces applied to the structure and multiplied by a

constant characteristic of the mode.

Since the energy delivered to & particular mode by a forcing function

generally is inversely proportional to a power of the modal frequency on the

order of 2-to-3 the significance of the high frequency modes decreases rapidly.

Therefore, though methematically accurate solution of the problem requires

consideraticn of a infinite number of modes, engineering accuracy generally can

be obtained by considering two or three, and often times only the tundamental
mode is of real significance. An exception to this situation occurs when a

resonance effect takes place; however, for the transient response ..at is of

principal importance for nuclear blast induced shock, resonance plays a secondary

rols because the forcing function (ground shock wave) does not last a sufficient

number of periods to build up & strong resonance.

11
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An aspect of normal mode theory that is unfortunstely frequently glossed

over in the literature deserves specific attention., Most of the elementary
'oblems discussed in texts on vibration, e.g., strings, beams, membranes,

andi plates possess & characteristic that simplifies snalysis but is not intrinsic

to the general problem: The displacements of all points of the structures

mentioned are parallel to each other, i,e., all displacements of thz string and

the beam are perpendicular to the axes of these members; the displacement of

8ll points on the surface of the plate and membrane are perpendicular to the

rest plenes of these elements. In general, this situation is not true. Thus

the displacements of the ecircular cylinder vibrating in its bending modes consists

of a radial component end a simultaneous latersl component tangent to the surface

 of the cylinder. Though the motion of any perticular point on the surface of the

cylinder is along a straight line, the lines at differeni points on the structure
are not parallel. Further, for the cylinder there is no point at which the scalar
megnitude of the motion is zero in a manner amalogous to the nodal points of

vibration of strings and beams or the nodal curves of membranes and plates.

1.1.2 Damping and Coupling

It can bo shown mathematically that the normal mode solution exists for a
demped structure if the equations of motior can be put in the form of Sturm-
Liouville problem. Within this limitation the only case which is of physical
significance and which mey be, from a practical standpoint, solvew usathematically
is the case where the damping force is proportionsl to velocity at every point of
the system and has the same direction as the displacement vector at every voint

of the system. Furthermore, the scalar proportionality constant, i.e., the

il
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demping constant relating the demping force vector and the velocity vector,

must be constant for the entire system. Most real systems ¢o not comply with
this criterion. However, it often can be used as a falr approximation to the {?
real systerm '“~-~h it must be appreciated that the major reason for making the
approxim tion is not physical but mathematical; _he problem is much simpler to

solve if velocity proportionate damping is assumed.

If the damping of the system is not velocity proportionate the normal mode
method of solution can re employed though in this case it loses some of its
physical reality and becomes essentially a mathemstlical tool of soume complexity
that will, however, give results to any desired degree of accuracy if sufficient

computations are carried out.

{
i
1
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The influence of no..velocity proportionate damping can have serious con- ¢
sequences to design; therefore, its effects will be discussed at some length |
from the physical standpoint so that the designcr may gain some feel as to what
might actually take place in a particular isolation system. The crux of the
matter is that substantial motions, other than those anticipated by an elementary
application of the normal mode theory, may develop after passage of the ground
shock wave. These might require considerable additionsal ra*tle space and sub-
stantial modification of the suspension mechanism over those required if the

system were truly undamped in the mathematicsl sense,

The physical reasons for ihis situation can most easily be observed by
considering the simplest of multi-degree of freedom systems, a pair of macses
and springs in series. In Figure 1.3 we have shown two masses in series with

two springs but only one dashpot connecting the two masses. Evidentl, the



J U N

Figure 1.3 ELEMENTARY COUPLED LIN ‘R SYSTEM
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requirement that the propcrtionality constant for damping be the same for all
elemente is not met by the system shown in Figure 1.3. Now if the dashpot were

eliminated the system shovm would have two normal modes., For each mode,the

o R e oncaRndlih T E g

contribution to thé displacemerts xl and x2 would always be proportional though §
the proportionality constants for the two modes would differ., With the dashpot ‘
in place, however, during motion of the masses a for ¢ is developed by the dashpot i
which is proportional to the difference between the velocity of mass 2 and maszs 1.

The energy dissipated is equal to the integral of the product of this dashpot

force and the differential relative displacement of the masses. However, the

dashpot force is applied to both masses. Therefore, if we assume that the gross

the MQ, k2 system and add energy to the Mi, Kl system. In other words, in addition

to dissipating energy as heat, the damping element transmits energy from one spring-

mass element to the other, depending on motions of the elements connected.

In Appendix A of this report the analysis of the general system is presented.
There it is found that for nonvelocity proportionate damping the damping factors
for all modes couple energv into all other modes. Thus, to return to Figure 1.3
if one mode only were to be excited the dashpot immediately wculd begin to remove
energy from thi- mode and trensmit it to the mode that was not initially excited.
Of course, while doing this it also would 4issipate some energy as heat. If the
vibration continued for a long enough period of time, ultimately all of the energy
initially supplied to the excited mode would have been dissipated as heat or
coupled to the mode thst was not initially excited. In general, this transfer of

energy requires a grest many periods of vibration. Therefore, the effect is most

15




pronounced when the amount ot damping is small so that only a small portion of
the energy is diessipated as heat during each period of vibration and the system
continues to vibrate long enough for the damping elements to transfer the energy
from vie excited tn the unexcited mode. These are precisely the conditions that

exlst in a resl system that we normally consider undamped.

The several modes for real systems may differ ma~vedly from each other in
their geometry and directions of motions. For instance. a pendulum supported
on springs hLas not only the obvious pendulum motion in two directions and the
gross vertical and lateral motions of the support but also a rotation about the

axis of the pendulum, If a suspension system, such as used for some missiles,

consisting essentially of a pendulous cage coutaiming the missile and supported ~ —

by springs at the top of the silo were not sufficiently damped,the energy
sommunicated to the pendulum by the ground shock wave might, after a period of
time, appear as a rotary motion of the entire suspension system about & vertical
axis, a situation that could induce severe damage to the missile and its suspension
system 1f not provided for in the design. Further even if the torsional mode were
not significantly excited, coupling of even a smell amount of the energy of vertci-
cal oscillation to the horizontal pendulum mode can be serious because s small

smount of circulating energy can represent a wide swirg for a long pendulum.

The modes of a system having nonvelocity proportionate damping, as discussed
in the previous parsgrephs, are accurately described as coupled modes. The damping
couples energy from one mode to the other. Unfortunately, the term "coupled modes"
is sometimes applied to an entirely different motion configuration, This may be

explained as follows. The vibration of a general system is a vector quancity, i.e.,

16
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for a given mode, motion at different parts of the system may take place in

different directions even though the motions are at all times in phase with each
other, For any particular vector mode, this moction can be resolved into scalar
components in any suitably chosen set of coordinate directions. The scalar
components are sometimes referred to as coupled modes. These cannot exist
independently of each other and individually do not have the simple e:ergy
relaiions characteiizing true modes. In this report when modal components are

considered they are so identified.

If any damping at all is present, during each cycle of vibration a certain

fraction of the circulating energy is removed from each mode. Normally, dsmping

is considered to be a conversion of the mechaniesl circulating energy into heal

by one mechanism or another, dashpots, internal friction, etc. A more general
definition of demping is any mechanism that removes some of the circulating energy
from the system during the course of a period of vibration. Under this definition
the divergent wave of energy emanating from a structure vibrating in a materisl
medium is a form of damping. The energy carried by the wave does not return to
the structure. Fcr instance, a missile silo vibrating in scil will radiate s
substantial energy wave. The energy carried by this wave does not return to the
silo. Therefore, this aspect of soll structure interaction introduces a signifi-
cant smount of damping. In Appendix A it is shown that for the lower order modes
of reasonably proportioned structures the damping is greater than critical.
Therefore, for these modes there is negligible coupling of energy between modes
induced by departure of the real damping from velocity proportionality end approxi-
mations ¢an be made for computational purposes without thereby neglecting

significant motion components.

1
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1.2 Shock Spectrum .

The peak relative response spectrum provides a useful tool for shock isola-
tion design under certain circumstances. The companion volume of this report,
prepared by Newmark-Hansen & Associates is devoted exclusively to the several
aspects of shock spectra as they are generally termed. Here we point out simply
the general ideas behind the shock spectrum approach and call to the asttention
nf the reader how certain information developed by use of the techniques presented
in this report can be used as a starting point for application of the Newnmark-

Hansen report.

A shock spectrum is simply a plot of peak displsacement, peak velocity, or
peak acceleration of a mass-spring system against the system's natural frequency
for a specific forcing function. If one has available a shock spectrum for a
forcing function input of interest then the pesk amplitude of each of the modes
of any linear vibrating system characterizable by normal modes and subjected to
the forcing function can be taken fro. the spectrum if the frequencies of vibration
of the modes can be estimated. Further, if the damping of the system of interest
is sufficiently small so that each cycle of vibration is approximately sinusoidal,
the modal motions, displacement, acceleration, and a so-called pseudo velocity,
that very nearly matches actusl peak velocity can all be taken from the same graph,

if it is plotted on quadruple coordinate logarithmic paper.

Since the spectrum is merely a plot of peak wvalues of response of mass-
spring systems versus frequency, it is applicable strictly only to linear,
uncoupled systems. Further, if damping is to be considered, the percentage of

critical damping used in development of the spectrum must be the same as the

18
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percentage of damping of the equipment to be designed with the aid of the spectrum.
Also, in the mathematical sense the peak relative response spectrum is not
applicable to couple .Lystems or to nonlinear systems. In actual practice the
errors introduced by employing spectra to design systems for which they are not

strictly applicable often are small enough to neglect.

In this report methods are developed for determining the motion on the
interior of a protective structure in terms of the free-field motion. For large
structures there can be considerable divergence between these. The Newmark-
Honsen report presents approximate, but quite accurate, methods for comstructing
spectra from certain cardinal characteristics of the input motion. Thus, by a

two-step process,developing first the interior structure motion and then the

spec um it is possible to cc.struct a peak relative response spectrum for the
design of shock isolators reflecting in the spectrum the soil-structure inter-

action, structure orientation and free-field ground shock wave chara~z - ristics.

The shock spectrum alsc provides a useful tool for evaluation of the effects
intr~duced by simplifications of an analysis. Figu'e 1.4 shows a comparison of
the spectra resulting from a step functior velocity input, and a decaying expo-
nential velocity input of the same peak amplitude. A glance at the spectra is
all that is required to show that if the decay constant, &, has a numerical
magnitude of 1 sec“;L or greater, no more than 10 percent error is introduced by

a step wave approximation at isolator frequencies of 5 cps or greater.



N [V VA NWa VaN A { VaNDLAYaVaN yA yd im
C W AVaN P<IX KOSIPAZ 7
7 Y 7 ) 2 717
N % A (NP d M Pa V. 83 vV\VQ 9. 0 P A ¥ N/
R SRR S SRR
3 4 N 9 9 < > Za
o %9 & "ad L INASIPLR AU,
50 e XN ARSI A2 S 2.4
V N v =
fNJ i (O RO E PR o
_' _ = A N / V ’ N A &K Q e
b i 3 y, Via Vs s a2 § " WA s Va2 NP N s V2 N Vo b 2
I\ . 2N RSP AWV XPEX 2
. R RS IR o
" KR IR EST RIS PKS . X7 ROIRRNL 5 £6
K L R BRI D RSy WXL ; B
" @A ’ R, /vm o wfu S\ % m s
o 9 YNNZZ; ) KINE XX N7 £EE 2
PR f 8 NIEONS ;oo
N N7 m h Z&
RS v - , wﬁ MVM , ; 23
SN PR PR £
y, Va W WAV Vi Oa W VAN N VaAVa s VoW 2 8E&
NP PRI 2,944 ANZ AN VAVAN =8
. 4 L | A r "W & 4 ~t
i -— X KIPK , RS : ORRRKSE 4B
, _ MN\Q vA 3 5 24 ﬂ YAN VA \ 28
| KRS % ww ok )¢ % x\ 2NN
_. } m ) N 4 5, o ) N
3 R 3 3 RSSO NN
LT ? DRRORDN RRG \
I Lo % ) P / N N
o vﬁm@ ANNNANN

I . . - @ © C a ~ e ® ~ » n - " ~ e~ W D -
! N m.. Q Q
|

208/44 Xit0




e

Lo TERE {«u

[T SR SRt

f

1.3 Equivalent Drop Method

The equivalent drop method is particularly useful during the early stages
of design for making upper limit estimates of ratitle cpace requirements and

establishing for a considerable variety of equipment whether or not shock
isolators will be necessary.

The soll particle motion at depth in real soils, due to detonation of a

large nuclear weapon may be quite complex; it will have at least two mutually

perpendicular components of motion and possibly three. However, ‘n particulate

soils subjected to air blast the vertical component of motion generally is

considerably larger than either of the horizontal components. For the remsinder

of this discussion, we will focus our attention on the verticsal motion component

only, realizing that the conclusions drawn apply 0 the smaller horizontal

components also.
In general, when engulfed by the ground shock wave the soil particle vertical

velocity component very rapidly increases from zero to some peak value and then

much more slowly decreases back to zero. In the subseilsmic region, generally

below the 100 psi overpressure level for particulate soils, the vertical partic

velocity may oscillate to some degree, Further, even in the superseismic rzgion

if bedrock is near the surface sutjected to air blast, the ground shock wa :
reflected upward from bedrock may impart a small oscillatory component to the
vertical particle velocity though generally this is of not more than nne-half

period duration. The srea under the particle velocity versus time curve gsives

the net vertical displacement of the soil particle.

21
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These ccmplex motions can be conservatively idealized by considering the

vertical particle velocity to be a step-wave, If it were not for the reflection
from bedrock a surface p-rticle, undcr this assumption, would continue to move
downward indefinitely. However, if the reflected wave proceeding upward from
bedrock is assumed to be equal in amplitude to the incident wave, the downward
motion of the surface particle would be stopped at the instant of arrival of

the reflected wave, though the permanent displacement of the surface therely
obtained would be considerably grester than the permanent displacement actually
resulting from detonation of a real bomb, Evidently, this ideslization may
considerably over-estimate soil particle motion. However, a step function of
particle velocitv, or velocity jump as it is generally termed, enables very rapid

estimates of rattle space and shock invut to equipment.

The peak relative response spectrum of a velocity jump when drswn on the
conventional four coordinate logarithmic paper is just a horizontal line at
pseudo-velocity equal to the velocity jump (see Figure 1.4). Now, if an object
were suspended a certain distance above an absolutely unyielding floor and the
bottom surface of the object parallel to the floor we.e made of sbgolutely un-
yielding material, and the object then allowed to drop and impact against the
floor the shock delivered to the object would be equivalent t5 a velocity jump
equal in magnitude to the wvelocity obtained by tne object falling under gravity
Just at the instant of impact. The shock spectrum of this impact then is an
upper envelope of all shock spectra having peak values on the velocity axis
equal to the velocity jump, Thus, from the standpoint of shiock damage to equip-
ment it is possible to conservatively equate overpressure levels, bedrock depth,

and soil parameters to an equivalent drop of the =2quipment to a hard surface.




(The horizontal component of shock can be simjlarly handled except that the

equipment should be envisioned as turned sideways when dropped.) Though the
method is obviously crude it has the important advantage tha*t the somewhat
intangible quantities significent to more sophisticated shock isolation analysis
are converted into a parameter for which engineers have consliderable intuitive
feel. Further, the numerical vaslues of the equivalent drop and velccity juup
are surprisingly small, Thus, at the 100 psi overpressure level, in soft soil
having a modulus of elasticity of only 20,000 psi at the 100 psi level, the
equivelent drop is only 4 inches. It could be ~nncluded therefore, that most

machinery and ruggedized electronic equipment wowid require no shock isolation

for these conditions. Only very sensitive eleuents, e.g., a liquid fueled missile,

would be unable to resist a 4 inch drop under gravity to a hard surface.

Even for a sensitive missile isolated by a spring system, the equivalent
drop provides a useful index for approximate determination of the relations betweer

rattle space, suspension frequency, and acceleration.

The development of the formulas for the equivalent drop approach, includ’ng
a relaxation of the step function form of the particle velocity to forms mor

nearly duplicating actual conditions are contained in Reference 1.

Graphs of the equivalent drop versus input parameters are included in

Section T.
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SECTION 2

CONCLUSIONS AND RECOMMENDATIONS

2.1 Conclusions

2.1.1 At the present state of knowledge highly refined shock isolation

design is not Justified.

2.1.2 The inherent error, cue to soll parameter uncertainties, in
+
determinetion of rattle space for a shock isolation system is at least -~ 20

+
percent and in some instances may be as great as ~ 50 percent.

2.1,3 The largest source of inherent error in shock isolation calculaticns
is due to uncertéiﬁty in the stress-strain behavior of real soils et the over-
pressure levels of interest, Uncertainties in the values of the propagation
velocities of compression waves, which ultimately hinge on the stress~strain
behavior of soil, contribute t.e greatest inherent errors to computed rattl

space regquirements.

2.1.4 Theoretical deductions indicate that at "typical" real sites the
second largest source of inherent error rcsults from uncertainty (or neglect)

of bedrock elevation, (For some conditions this is the largest error.)

2.1.5 Theoretical deductions indicate that field tests carried out at
Frenchmen Flat and on the Pacific 1 Jving Ground canuot provide significant
information or the influence of bedrock at more typical sites. This is due

to the peculiar geology at these test sites.




2.1.6 The third most important source of inherent error is due to un-

certainties in energy dissipation (wave attenuation) characteristics of soil.

2.1.7 A hard structure fuactions as an effective filter of high fi-guency

ground shock components regardless of assumed soll characteristics.

frequency that can be transmitted to the interior is the larger of:

1.

2.

The rigid body frequency in soil.

The first deformationel mode frequency in soil.

(Kote: The second of these may be much higher than the first

2.1.8

motien, the

deformational frequency in vacuum.)

components:

1.

A rigid body motion equal to the free field particle motion
having a rise modified to reflect soil-structure interactiou;
A deformational motion quasi-statically computed but having
a rire modified to reflect soil-structure interaction; the
quasi-static deformation is eguivalent to the deformation the
structire would undeigo at any instant if the ground shock
wave were statically applied to the soil-structure complex.
This motion is a function of time but, since it is cocmputed

quasi-statically, it is independent of soil and structure

inertia.

[o]8
o~

The maximum

To within less error than the inherent error of the free field

interior strueture motion can bz considered to be the sum of two




2.1.9 Theoretical considerations, not known to have been verified experi-~
mentally, indicete that shock isolators can be omitted for much equipment in

hard shelters, even at high (1000 psi) overpressure levels.

2.1.,10 If shock isolation is required the minimum energy (and generally
minimum cost) vertical cystem will result if the frequency 1s chosen so that
one gravity unit acceleratior is applied by the system to the isolated equipment

at maximum departure of the equipment from equilibrium.

2.1.11 Twuc reduction in ra’tle space achleved by manipulation of suspension
frequency and increase of t:lerable equipment acceleration is only a fraction of

the error inherent in determination of rattle space.

2.1.12 It is believed that negative spring systems having naetural frequencies
two or three orders of megnitude lower then conventional (~ 1 cps) systems can be
developed. A negative spring is defined as any device nsving a negative force
versus displacement characteristic. The main problem to be overcome in systems
using negative springs is adjustebility under varying magnitude and distribution
of static load to maintain constant static deflection. Such systems would be
substantially independent of cross coupling effects between modes, would not ring
significaently after excitation, and would have only slightly greater energy

capacity, for given stroke, than linear spring systems,

2.1.13 Air springs and similar systems having concave upward force versus
displacement curves at a given stroke will either
1. Have much larger energy capacity than a linear spring system of

the same stroke and peak acceleraticn, or

r‘,6
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2. Subject the equipment to a consicderably greater acceleration %
than a linear spring system of the same stroke and energy

capacity.

2.1.14 Theoretical considerations indicate that sharp, short pulses of stress
having rise times measured in microseconds can be geherated within structuve and
equipment by tension and co ression waves propaegating through materials having
concave stress strain curves. These pulses can damsie small, delicate elements
such as vacuum tube heaters and filaments. They can be prevented from reaching
equipment by mounting the equipment on plates or brackets in such a way that all
energy propagated through the bracket must appear at some point as a bending wave

(as opposed to & direct tension or compression wave),

2.1.15 Peak relative response spectra for interior structure motion can be
synthesized approximately by combination of spectra due to simple pulses. The
errors introduced by ‘he approximations are considerably smaller than the errors

inherent in the input (ground motion) data.

2.1.16 Shear waves can be neglected in shock isolation design without
introduction of significant error. Neglect of the shear waves is slightly

conservative.

2.2 Recommendations to Shock Isolation Designers

2.2.1 The input motion to the isclator will be the least accurately known
data used in the design. Accordingly, this aspect of the problem deserves as

much meaningful refinement as can be carried out. (See Section 4)
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2.2.2 If equipment must be isolated to a few g then the minimum energy,
and probably minimum cost, vertlcal system will result if the frequency is chosen
+
so that - one g acceleration is developed at maximum stroke. For these and other

low frequency systems peak displacement only need be computed. (See Section k)

The concept of the "shock response spectrum" is a useful one in the design
of shock isolation equipment. »or a detalled discussion of its applicability as

an index of equipuwent shock damage the reader is referred to Reference T.

2.2.3 A smsll component of circulating energy represents a wide swing for
a long pendulum. The circulating energy of a vertical system will be equal to
the product of maximum stroke and equipment weight. Thus, if even a small fractior
of this is coupled to the pendulum the latter can be excited to destructive ampli-
tudes. Therefore, both systems should be damped using Coulomb (not viscous)
dampers and the ratio of vertical to pendulum frequency should be as large as
practical, greater than three and an irrational number. Even frequency multiples
chould be avoided, particularly 2. An sccurate nonlinear analysis of the resulting

system should be carried out.

2.2.4 In many installations i<olators can be omitted from much equipment.
Section T gives a simple methed for determination of a convenient coaservative
criterion (equivalent drop distance) for determination of whether isolators are

necessary.

2.3 Research Recommendations

Though the complex problems of wave propegation and soil-structure inter-

action are as yet not understood completely, it i3 evident that existing approximate
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techniques introduce much less error into shock isolation calculations than does

the present dirth of knowledge of the stress-strain beha.ior of real soils at high

Pressure levels. Even static test data at 500 to 1000 psi is extremely scarce.

Conceding at the outset that dynamic etfects may modify static data somewhat
and further vhat the almost infinite variecy of soils will preclude ever obtaining
a compendium of precise data it still can be argued that practicelly any factual

data would place the designer in a better position than he now occupies.

If a designer had available a series of stress-strain curves with numbers
for real soils he zruld at least use socme judgement in estimating a curve for

other soils and have a deg.ee of confidence in the values of the slope of his

approximation at pressures varying between zero and peak ~verpressure.

Accordingly, it is strongly recommended that the following data be obtained

from static and laboratory dynamic tests for a variety of real soils:

2.3.1 ©Stress versus strain curves from confined compression tests in
the range between zero and 500 psi.

2.3.2 Slopes of the hysteresis loops across the entire range of pressures.

2.3.3 Percyclic (or other) damping factors for single high pressure pulses.
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SECTION 3

INHERENT ACCURACY
OPTIMUM SYSTEM CHARACTERISTICS

If all of the input parameters of a shock isolation system design were
known with three figure accuracy, sophlsticated analysis and optimization could
be carried out and nicely engineered suspension systems deve. ped. Regardless
of the accuracy that might be desirable however, the inherent uncertainties in

input parameter values limit the accuracy that can be obtained.

In this section the problems of input error and system optimization will
be examined., These will be used to establish limiting accur 'y to be striven
for and to delineate the mathematicel complexity necessary to achieve thi:

accurscy.

3.1 Wave Reflection in Real Soils

At most locations within the bounds of continental United States, bedrock
occurs within one or two hundred feet of the surface, though actual depths at
speci.ic locations may ~vary from zero at Limestone, Maine to sr veral hundred

feet in parts of North Dakota.

If bedrock lies below the surface a distance on the order of one hundred
feet, theory predicts that a strong reflected wave will be developed in the
particulate overburden and that neglect or consideration of the reflected wave
introduces an uncertainty factor greater at the lower overpressures than that

of any other paresmeter even including the square of the wave propagation velocity.
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Considerable evidence huag been presented however that the predictions of
elastic theory do not appear to occur in real soils. Sauer (Reference 9) points

vut that experimental data obtained from nuclear field tests do not exhibit

s et SRS

significant reflections of stress waves. Newmark and Haltiwanger (Reference 6) ;
state further that laboratory tests on soll with differences in seismic velocity

and density of adjacent layers have ylelded similar results. The authors of :
Reference 7 have concluded, based on the data presented by Muskat and Meres
(Reference ), that the enerygy carried by reflected waves is relatively unimportant,
on the order of 11 to 15 percent of the incident wave energy. Thus in spite of

the predictions of elementary elastic theory the tendency in shock isolation

design has been to ignore reflections as being a theoretical complication of
considerrble magnitude yet one that influences results well below the inherent

error in the problem and one that hac not been evidenced in actual test data.

In spite of the evidence the author of this 0.t does not agree with this

philosophy and has not adopted it in preparation of the report.

In Nevada ground mo*icr. data have teen obtained for only KT weapons. At the
overpressure levels ¢f interest (> 100 psi) the positive phase duration is on the
order of l/lO second and the compression wave propagaiion velocity is about 1500
ft per second.' Thus, neglecting all attenuation factors the wave length of the

entire positive phase is on the order of 150 feet.

At the Nevada Test Site bedrock occurs at a depth of 650 feet. The bedrock
seismic velocity is about 10,000 ft. per second. Above the bedrock is an
approximately 450 foot layer of sand and gravel having an average seismic velocity

on the order of 3000 to 3500 f't. per second; above this is a 200 foot layer of

11
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loess having an uverage seismic velocity of about 2000 feet per second. Since

the ratio of acoustic impedances of the regions sbove and below the minus 200
ft. elevation 1s less than two, a sizeable refleéction at the interface, even if
well defined, is not expected. Thus the only sizeable reflection that could be
expected in Nevada is that from bedrock. But the bedrock reflection must travel
a distance of about 9 or 10 initial wavelergths. Thus even a conservative esti-
mate of attenuation indicates that the reflected wave would have an amplitude

less than 2 percent of the initial amplitude.

It is not surprising that no bedrock reflected wav: is observed in Nevacda;

none should be expected.

In the Pacific the surface layer, not more than about 20 feet thick has a
selsmic veloeity varylng from 800 to 4OOO ft. per second a+ weter level. Below
the water level a layer about 2500 feet thick has = averasge seismic velocity of
about 800 ft. per second. Then below this is a layer 5 to 10 thousand feet thick

having a seismic velocity of about 11,000 ft. per second.

At the 100 psi level the positive phase duration of s multi-megaton bomb
is on the order of 2 seconds. At higher overpressures the positive phase
duration increases but the time from peak overpressure Lo 10 percent of peak
overpressure decrease . For these large durations the 20 foot surface layer
is Just a skin separating the aero-shock from the ground shock wave in the
800 ft/second layer. Thus the wave length of the entire positive phas~ *a the
2500 ft. thick "surface" layer is about 1600 feet; the initisl wave length of
the portion of a 500 psi wave between 500 and 50 psi would be only about 500 ft.

for ¢ multi-megaton bomb.
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Thus the reflected waves must travel a distance between tlhiree and ten

initial wave lengths before appearing near the surface. The low seismic velocity
exhibited is due primurily to the structured, porous nature of the coral island,
and therefore the inelastic damping of the material is very high. If geometric
attenuation and a percyclic damping factor of 0.5 are assumed, even at three
initial wave lengths propegation the reflected wave will be attenuated to about
10 percent of its initial pesk value and wi'l arrive at the surface at least six

seconds after blast wave arrival.

We conclude therefore that at the Pacific Proving Ground evidence of "bedrock”

reflec’ ~d waves should not be expected, particularly at the higher overpressures.

The Muskat, Meres paper .annot be taken as evidence that signifiéantrﬁédf6ék e

reflections will no* occur; these authors did ..ot consider that problem. Muskat
and Meres have limited their data to an interface acoustic impedance ratio of

2.6 (y a in their pasper). The elementary one dimensional elastic theory indicates
a reflection having only 20 percent of the incident wave energy at this ratio.

At & soil rock interface occurring within one to two hun "~ "eet of the surface
the ratio would be more nearly seven to ten. Av an acoustic impedance - . of

T the reflected energy is 55 percent of the ine-.de .nergy. Further, the
reflected pressure is T5 percent of the inc’dent pressure. Surface displacement

is proportional to the pressure.

Another argument against reflections in soil trat is sometimes advanced is
that the interface between particulate soil and rock generally is not sharp but
consists of a five or ten foot layer of irregular rock surface, boulders, ce znted

soil, etc. The transition region presents formidable difficulties to analysis
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so it may safely have imputed to it any set of mystical properties desired. The

reflected wave above the transition region consists of the sum of an infinite

gset of mulitiple reflections and refractions teking place within the transition.

Here we will meske no attempt to consider the problem mathematically but
will present a simple physical discussion that clearly illustrates that the
physical effect we generally choose to characterize as a methematicael reflection

must occur in real solls and will have significant influence on surface motions.

Figure 3.1 shows schematically a column of real soill resting upon a
relatively rigid bedrock. Between the two 1is a relatively thin but finite

transition region.

~ If a pressure is applied to the surface of the soll and maintained, a wave

is propagated into the soll columm. Physically, the wave represents the distance
within the soil column that is under compression, though the latter need not be
constant within the wave. The compression causes the column to shorten and the
surface pressure delivers energy to the soil equivalent to the product of surface
pressure and surface displacemernt. The compression of any element of soil causes
all elements above to move downward. Since the process is continuous all elements
of soil acquire a velocity (particle velocity) which need not be equal for the
various elements. The particle velocity results in the soil columm acquiring

kinetic energy.

In mcst real soils compression of the soil induces some heat. ™he sum of
heat encrgy, kinetic energy and strain energy in the column at any instant is
Just equal to the energy delivered by the surface pressure acting through the

distance the surface has displaced at that instant,

34
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When the wave front passes through the trensition region into the bedrock

a number of things cen happen. Here we are concerned only with the fact that
some wave does propagate into the rock. The pressure associated with this wave
can be elther higher or lower than the applied surface pressure. Hcwever, we
heve postulated that the rock be stiffer than the soll; therefore at a given
unit strain a unit volume of rock containe more strain energy than an equivalent
volume of soil. Thus 1f a unlt volume of rock compressed as much as the soil
above had been compressed, energy would be created, an impossibility. We
cénciude thereforé that regardiess of the detalled characteristics of soil aad

rock 1f the latter is stiffer than the soll the unit compression will be less

..than in the soil. This argument is ladependent of the rock-soil transition

characteristics.

Now if the unit compression in the rock is less than that in the soil the
veloc bty galned by the rock is less than that already estalLlished in the soil.
The result is that the soll piles up ageinst the rock, the pileup commencing at
the interface and proceeding to the surface. (This is the reflected wave).
During the pileup the soil particle velocity is reduced to the rock surface
(particle’ velocity and the difference in kinetic energy is converted into soil
strain energy and heat. The additional strain in the soil induced by the pileup
causes the snrface to further displace and allows the applied pressure to deliver
mo.2 energy to the column. However, the stress induced in the soil is greater
than the applied pressure so when the pileup reaches the surface it immediately
moves upward the surface on which the pressure is spplied, causing the soil column

t0 a2xpand and the surface to recelve an. upward motion component.
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At this point the surface pressure is insufficient to maintaln the compres-

slon in the pile so the latter relaxes starting at the suiface and proceeding

downward, This is the surface reflected tension wave.

Now, it should be evident that a finite transition regior between the rock

and soil can affect only the initial details of the process but not the grc:s

results,

If the rock were so stiff that it could be considered with tolerable error
to be infinitely rigid then nearly all of the kinetic energy in the soil would
be converted into strain energy and heat. The "nearly" qualification is used

because for the most real materials all of the particles in the soil would not

77 Tsimultaneously be reduced to zero velocity., Evidently however; from physiesl - — -

reasoning, the residual velocities remaining in particles after engulfment by
the reflected wave must be small. Thus for a first estimate, the surface
displacement induced by the reflected wave would be equal to the displacement
necessary to accommodate as strain energy the algebralc sum of three energy
components:
1. The kinetic energy left in the soil by passage of the
initial compression wave (positive),
2. The energy delivered to the soil by the surface pressure
écting through the additional surface displacement induced
by the reflected wave (positive),

3. The energy lost as heat (negative).

The real blast wave decays with time and consequently detailed analysis

becomes quite complex. However, we crn make a falr estimate of the additional
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surface displacement by considering the stress strain curve of the soil, In

order to simplify the discussion a nonlinear elastic soil will ve considered,
i.e., one that does not generate heat during compression. (Such a soll probably
does not exist.) Since the heat generating process (hysteresis) produces

permanent displacement this restriction will not impose unrealistic results.

Figuare 3.2 schematically shows the stress strain curve of a hypothetical
nonlinear elastic soil., If pressure asnd velocity variations are not too great
the same curve can be taken as a reasonsble approximstion of the average stress

versus average strain in a finite colum of soil.

Now, consider a column of soil loaded at a constant pressure, p. The

- ‘displacement of the surfasce is proportional to the soil strain. Fhus in - -~

Figure 3.3 the sbscissa noted is proportional to the initial surface displacement

for a scil column of fixed length.

The enerzy delivered to the column by the surface pressure is equal to the
product of pressure and displacement. This is proportional to the area of
rectangle OADE in Figure 3.3. Now the sirain energy in the scil is proportional
to the area under the rnurve ODA. Therefore, since there is no heat loss in the
nonlinear elastic soil the kinetic energy in the coiumn is proportional to the
shaded area ODE. We emphasize again that these relations would be strictly true
only if the pressure pulse traveling in the soil were a step wave having a clean
shock front. Then the compression would be constent within the loaded column of
soil and the relations described here would be valid. In fact, however, a step
pulse is not conserved in a nonlinear elastic soil, Therefore these relations

are at best reasonable approximations to the true conditions within the soil.
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to the stiippled area DCF, and the ratio of reflection induced surface displacement

Upon reflection, the kinetic energy is converted into strain energy causing

the surface to displace an edditional amount A B, and the total energy delivered
to the column by surface pressure is then proportional to the area of rectangle
OBCE. If the velocities of all particles simulteneously become zero then this
energy would have to be equivalent to the strain energy proportional to the area

ODFCBA. Thus, for these conditions the shaded area ODE would have to be equal

to the primary wave induced surface displacement would be equal to the ratio %%.

~ For a linear elastic medium this ratio is just unity. Bvidently however,
for the hypothetical soil 1llustrated in Figure 3.3 this ratlic can be comsiderably '

greater than unity. For other stress strain curves it might he less. Computations
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are further complicated in a real case because some heat may be developed, a
portion of this heat being reversible and the remainder irreversible. Neglect of
the heat, however, is conservative for design because its neglect implys greater

kinetic and strain energy than actually occur.

There is no doubt that when a decaying surface pressure wave, hysteretic

PR

medium and geometric attenuation are considered, the ratio of reflected wave

induced to primary wave induced surface motion can vary widely from the over-

R R T

simplified conditions of Figure 3.3. Our point is that whatever the "exact"

B x-

value of the retio, neglect of this factor in many real instances would introduce
an error or uncertainty greater than the uncertainty in any other parameter

influencing the ground motion problem,

3.2 Suspension Frequency Range

Consider the principal characteristic of the vertical motion of & particle

in the free field. The particle is motionless until the wave front of the ground

Lo




shock wave arrives, Then, due to the rise time of the wave the particle

experiences a rapid increase in velocity to a peak value. The time required

for this to occur 1s on the order of a few milliseconds. Subsequently the wave

continues to bedrock and reflects, the reflected wave ultimately engulfing the

particle. If the wave had a flat top and raflection at bedrock approached that
of perfect reflection from an infinitely rigid surface, the velocity of the
varticle would remain constant during this interwval. Then at engulfment by the

reflected wave the veloclity of the particle would decrease to zero.

because of the departure of real soils from the idealized elastic aSSumptibﬁé; -

the imperfect reflection at bedrock, the decay of the wave subsequent to peak

-—— - pressure; -dissipation >f the wave energy as it travels, and the fact that not one_

wave but a series of waves are actually involved, the general character of the

particle velocity history is somewhat modified. But its overall character can

be represented by
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1. A repid rise of a few millisecouds.

b A A e

2. A nearly constant plateau followed by a slow decay, the
total occupying a time period on the order of l/h second
for large bombs, and deep (100-200 feet) bedrock.

3. A rapid decay through zero to a small negative value.

4, A decaying negative velocity of long duration.

The directly transmitted ground shock component is superimposed on this,

It should be apprecliated that the motion of the selected particle is

physically due to the compression of the soil between the particle and tedrock

plus any bedrock motion, Thus sinece a uniform wave advencing at nearly constant

1




velocity compresses the soil at a uniform rate the velocity of any selected

particle above such a wave would be nearly constant.

|
From the above we can see tlat the simplest approximation to free field z
particle velocity is a vclocity step function. This can be made more realistic !
by imposing a short rise time, a decay rate dependent on bomb size and possibly i
soll characteristics, and finally terminati , the velocity pulse at the time
required for the ground shock wave to meke the round trip from particle to bedrock
gpd back to particle. (These assumptions would imply permanent displacement of

the surface.)

i
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If a structure of finite size were iImmersed in the soill the motions observed

- et T 48 P PR TR AR ASEORT Gk v -

at a point on the structure interior would -d4iffer from . ose in the free field,

P
et s

A reasonably proportioned structure (even very unreasonably heavy structures) will

be lighter than the soil displaced; therefore it may be regarded as a captive

bubble in the soil. When engulfed by the ground shock wave the bubble deforms

v e meekes e ameianan e i

and reflected waves are radiated from its surface. Depending on structure rigldity
as compared with soil rigidity the reflected waves may either incresse or decrease

the interface pressure.

Now it should be evident that at some time subsequent to engulfment the
captive bubble will be"riding" with the surrounding free field. Thus the net
overall effect of soil-structure interaction is to increase the rise time of
structure interior velocity. Roughly, this rise time increase is equal to the
time required for the wave to engulf the structure, s few milliseconds for silos

and one to two tenths of a second for large command centers. Evidently, from the
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standpoint of shock 1solation the soll-structure interaction becomes more

important with increasing structure size.

Consider now the basic problems to be faced in designing an isolator., We

will not complicate the discussion by considering damping, inelastic effects, etc.

The first and possibly most important questions to be answered are "Is any
shock isolation required; does the structure provide enough for this equipmentt”
These questions, we will find, can be the most difficult to answer; here we

agsume that isolation is required.

The ultimate isolator would have zero matural frequency thus supporting

the suspended equipment in an abgolutely motionless state while allowing the

isolators are very nearly achievable at not unreasonable cost. However, the
rattle space required by such an isolator is the maximum occupied by a reasonable
design (an unreasonable desigrn could increase it). If some acceleration of the
suspended equipment could be tolerated the rattle space could be decreased.

Since lecrease of rattle space may be reflected as savings in cost of the entire
installation a knowledge of the tradeoff between isolator rattle space required

and acceleration of equipment to be tolerated can be very useilul.

The tradeoff criteria need not be highly accurate. Decrease of rattle space
from 12 inches to 11 inches would not ultimately appear as a dollar savings;
decrease from 12 inches to 6 inches however might justify a reduction in structure

size and be reflected as a real dollar value,

The peak relative response spectrum of the forclng function described above

fairly closely follows che conventional trapezoidal spectrum used in missile

L3

- ~gupporting structure to move around 1it. At the present state orf technology such
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shock isolation design. On the left hand, or displacement leg of the spectrum,

changes in isolation frequency wlll vary the acceleraticn suffered by the suspended
equipment but the rattle space required would remaln invarient. On the horizontal, i
or velocity branch of the spectrum, the product of displacement and acceleration

remains invarlent with changes of frequency.

Reference to Figures 2.17 to 2.22 of the Newmark-Hansen report shows that
the "velocity plateau” of spectra for simple pulses of duration ty and having the

general charsascter of the ground shock induced velocity extends across the range

of tdf between about 0.4 to 1,0 and has a maximum pseudo velocity about 1-1/2

times the maximum velocity of the input pulse.

s e s e, A g s e e o 4 s

oo ‘“ 77T Thus 1T rattle space is to be decressed by employing = stiffer isotatiom - -

system the minimum isolator frequency that could be used would be on the order of

D e e e

) ~ 0.k i

£ in® £ cycles per s..ond (3.1) E

The peax absolute acceleratlion, &, in gravity units would be given by :
g 2

a4 = f (3‘2)

g zmax min

where zmax is peak relative displacement.

Now peak soll particle velocity is given by

P
g
V.= 5 (3.3)
where
Po is pesk overpressure and

; Pc 1is the aversge acoustic impedance of the soil,

The maxlimum relative displacement, Znax’ is equal to the maximum soil displace-~

ment for the condltions being considered. Thus
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yA = 2 m—— .L‘
max - PV % pe (3.4)
where B is o factor, somewhst less than one, so chosen that ﬁth equals the

area under the velocity curve.

Also, the duration, td, is given approximately by

. 2D
a~zc (3.5)

where D is the depth of soil between the isclator and bedrock.

t

Combining these upproximations yields

450 B [p (psi)] .
Ue) = T5TeE) T TH(F)] (3.6)

where ¥, the unit weight of the soil has been substituted for pg.

Now, it should be noted that the three parameters remaining in Equation
(3.6) are those most accurately known, the wave velocity, c, having cancelled
out. Therefore Equation (3.6) gives an excellent estimate of the minimum
acceleration that must be withstood if designs are to be made on the horizontal

branch of the shock spectrum.

If we take
vy = 110 1bs/et3
= 100 ft
B = 0.85
we obtain

li'cy 100 psi 300 psi 500 psi 1000 psi

a 3.5 g 10.5 g 17.4 g 34.8 g
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We conclude immediately that the experience already obtained on hard
installations, which indicates that shock 1lsolation systems are almost univer-
sally designed for frequencies on the displacement leg of the spectrum, is
indicative of design conditions for fut ':e higher pressure installstions. Only
small ruggedized equipment ic likely to be installed at the higher g levels.

Thus for most work we will have to use low frequency systems designed for rattle
space equal to the entire soil motion.

Accepting that the systems used will heve to be low frequency meximum input
displacement systems, we ask ourselves if there is sn optimum frequency on the
displacement leg of the spectrum. It is fairly simple to show that there is.

For a first order estimate the cost of a spring suspension system is propor-
tional to the weight of the springs provided. The weight of the springs in turm
is proportional to their energy capsacity.

Now the energy capacity of linear sourings is equal to one half the product of
the total stroke of the springs and the force developed at total stroke. The
total stroke is equal to the equilibrium stroke ("static deflecticn", or distance
the spring compresses when the equipment to be isolated ic placed upon it) plus
the working stroke.

At the equilibrium position the force exerted by the springs is equal to the
suspended weight, i.e., in proportion to one g acceleration; at total stroke the

force is proportional to ng acceleration, n being the maximum design acceleration

of the system including gravity.
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Denote

n chosen.

= total spring energy

= equilibrium stroke

= working stroke

= weight of isolated equipment

= spring torce due to totel stroke

= spring force due to equilibrium stroke

= spring constant

F_ = kx (3.7)
F, = k(x + 2) (5.8)
F

t x + 2z

T =10 == (3.9)
X

U -%Ft(x+z)=%k(x+z)2 (3.10)

1 2
U =3 wxa (3.11)

Now, for a given system w and z are invarient but x depends on the value of

where

and

“> B>

Then for minimum energy

au _ ., _ 1 A2 dn

-a-x— =0 = 2W [n + 2nx d.x] (3'12)
A

O=n+2-§—§ (3.13)

is the vaiue of n

is the value of x satisfying Equation (3.13).
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From Equation (3.9)

dn 1 (x + 2z
dx X i__;§_2 (3.14)

Substituting Equations (3.9) and (3.14) into (3.13)

0=%X1Z% 4o .2tz (3.15)
X X
Solving ylields
% =z (3.16)
and n=2 (3.17)

Thus the minimum energy vertical linear spring system will be obtained if

the spring cor<Sant is chosen so that the equilibrium stroke is equal to the

working stroke. The total aeceleration including gravity on the isolated equip-

ment during paseage of the blast wave then will vary between 0 and 2 g.

Since the equilibrium energy of a lateral isolation system can be made
zero the energy capacity of the latersl system can be made indefinitely low by
decreasing the system frequeacy, and cost will be purely a function of the

mechanical devices elected by the designer.

3.3 Available Accuracy

The uncertainty in input parsmeters limits the accuracy with which shock

isolation computations can be carried out.

If criteria are avallable for establishing the limits of accuracy available
they can be used to establish the degree of complexity that will be meaningful

in carrying out the computations.

48




e man e e

R

~r

i

It is shown in Section 3.2 that, if isolators are required, in the majority
of instances low frequency systems are indicated. In fact, the minimum energy
(and probably minimum cost) systems have the natural frequency of oscillation
so chosen that the active stroke of the isolator is equal to the equilibrium

stroke.

The period of vibration of a linear mass 3pring system, T, is glven by

T=oVE (5.18)

g
where ¥ is the equilibrium stroke, il.e., the static displacement.

For the one g system naving equilibrium stroke equal to working stroke

1L=‘,zmax N ”(3.719;)7 i
Substituting Equation (3.5) into (3.4) yields

EBRJD
x=z = sz (3.20)

3 /25? D
o

Dividing this by the approximate duration of the velocity pulse, Equation (3.5)

=
L.NVE (3.22)

d w

Therefore

T

We note that again the more inaccurate parameters have cancelled out and that

Equation (3.22) therefore gives an excellent estimate of the ratio T/td.

Choosing
B = 0.85
v = 110 1bs/ft>
D = 100 ft, 200 ft
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for

Py 100 psi 300 psi 500 psi 1000 psi
T D = 100 £t 4.9 8.5 11 15.4
td D = 200 ft 3.5 6 7.7 12

We conclude that most systems will be designed by impulse methods requiring
for thelr laput only the peak displacement of the soil. The exceptions would
occur at the lower overpressure levels, systems in structures large enough to
considerably modify the input motion by soil-structure interaction and possibly

systems in which isclation devices were omitted.

Therefore the limiting accuracy available for design of most isolation

systems can be determined by considering the accuracy with which the peak input

displacement can be determined.

First consider the approximate Equation 3.20.
) 2fp,D

z s (3.20)

max

pc

The relative error Az/z is given by

D 2Ac
%J_\g,,é_ﬁ_%p_c_%_ (3.23)

Now the average value of p will be known to within two or three percent
accuracy 1f soll samples are taken. The depth D can be measured to within g
couple of feet by seismic means but most likely will vary from point to point
at a particular site resulting in a larger average error. Probably, if the
average value could be determined to I 5 percent (100 £t ts ft) we would have

to be satisfied.,
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The aversge wave veloclity, ¢, reflects the nonlinearities of the stress-
strain curve of the soil, the soil hysteresis, and in Equation 3.20 all of the
other approximatlions to the "elastic constants" of soill. (We note that the
denominator of Eguation 3.20 is equivalent to the modulus of elasticity of the
soil, possibly the least accurately determinsble soil characteristic.) One is
hard put to meke even a good estimate of the accuracy with which ¢ can be

determined. However, the seismic velocity, c,, can be measured to two significant b

1
figures. Wilson (Reference 12) suggests that the velocity of the pesk pressure

be token as 1/2 to 3/4 of the vertical seismic velocity. Accepting Wilson's

b e vareen e a

<+
estimate we could tske for the compression wave velocity 5/8 - 1/8 of the seismilc

+
velocity of the soil, an inherent error of - 20 percent.

If the overpressure level is in the vicinity of the plateau of the soil

stress strain curve the reflected wave will travel faster than the incident wave

due to the precompression induced by the incident wave. Because of the large
inherent error it does not seem reasrnable to attempt to distinguish between
these velocities in computation. Therefore It is suggested that, lacking actual
test data the average compression wave velocity be taken as equal to 66 : 15
percent of the uphole seismic veloclity recognizing that the error given is

§ approximate.

In circumstances where the reflected wave does not add to the incident wave
it is suggested that, lacking test data, the compression wave velocity be taken

as 60 = 20 percent of the uphole seismic velocity.
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At the high overpressure levels (> 1000 psi) some accuracy in the calcula-
tions can be gained by meking use of the fact that by the time the reflected

wave srrives the overpressure will have decayed to a small fraction of its peak

value.

Maximum surface Aisplacement will occur at the instant of peak reflected
pressure arrival except in the rare instances where soil attenuation is s» great

that a point is reached wlkere rate of attenuation of pressure just balances the

rate of increase of impulse delivered to the soil by the aeroshock wave.

Excepting the latter condition the maximum displacement is given by

where
X is
Jel is
c is
I. |is
D is
and p(t) is

of

Now if 2D/c is a time sufficiently long that it revresents a major fraction
of the positive phase duration the impulse Id will be very insensitive to D and c.

From the elementary differentiation formulas the relative error in x 1s given by

Ax

X

the peak displacement
the average soil density
the average compression wave velocity

the impulse given by
g2

c
I4 = J
o

p(t) at

the distance from structure to bedrock

the pressure iu'the soil including the effects

attenuation with distance traveled.

- . (& A0
'(c +P)’

(3.24)

(3.25)

(3.26)

i
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Id being presumed accurately known when formula 3.24 is used.

Now the density of a soil is probably its most accurately known quantity;
the ratio Ap/ pusually can be taken as no more than 5 percent if the soil at the
site is known. The wave propagation veloclty however is known with considerably
less accuracy, particularly at higher overpressures end for the more inelastic
solls., Indeed, for real soils it can only be an approximate, average estimate of
s variaeble quantity of considerable complexity. An estimate of : 20 percent for

Oc/c generally would be guite good.

Thus the percent error in displacement resuiting from use of the simple

+
formuls and inherent input data error is on the order of - 25 percent.

- - - Some en, ineers might question the accuracy of the formula because it 1s =

based on elastic theory and is being used, with appropriate parameter approxi-
mations, for an inelastic medium. They might argue, and quite reasonably, that

for the inelastic medium there is not Justification for taking
2
E = pc (3.27)

which is done in the development of Equation 3.24. Instead, they might prefer

to use

I.c
d
(3.28)

*ETE

which is more primetive than Equation %.2&, and estimate an average effective

value of E independent of propagation veloeity.

The relative error :n x resulting from Equation 3.28 is

.o (3.29)
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Now there is probably no more difficult quantity to measure and estimate
for an inelastic soil than the effective modulus of elasticity. Even with
laboratory tests accuracy better than about t 20 percent I3 unlikely. Thus by
the use of Equation 3.28 the error in x would be : 40 percent, 50 percent higher

than would be obtalned by use of Equation 3.2k,
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SECTION 4

DETERMINATION OF FREE FIELD INPUT

+
In Section 3 it is shown that an error oo the vrder of - 20 percent must
be tolerated in the determinaticn of input to shock isolatlion systems. Indeed,
in many real situations even this accuracy could b obtained only with the aid

of an extensive field and laboratory test program,

It also is pointed out in Section 3 that if shock isolation systems are
v .ed they will be low frequency systems., In relatively small structures the

influence of soil-structure interactlon on system design will be nominal with

a low frequency system. In subsequent sections of this report it is shown that

the accuracy obtainable with existing simplified soil structure 1nteraction

theories 1s considerably better than the input error that must be tolerated.

Now, since the actual design of an isolator to resist an established input
nan be carried out with scientific precision, if desired, the principal source

of error in the entire design problem is the error in the input.

+

Inasmuch as errors on the order of - 20 to 30 percent will be involved ‘n a
shock isolator design, a strong case could be made for adopting some simple
convention and be done with it. It can be argued, quite reasonably, that if we

must guess the input we may as well guess the result.
Two counter arguments can be advanced:

1. As a consequence the possibility that shock isolation can be

eliminated from a particular system could not be considered.

- banidrtny, B ek b, L AN i
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contractors. Already & substential literature on the subject has developed. .. . ... . . .

2. Such an approach would e =ctively stop further progress in
the field of nuclear shock isolation. g
Therefore it is believed to be necessary for this report to present methods that i
are rational and as accurate as practical within the present state of the art g
for determination of the free field ground shock input characteristics. ince i
the accuracy level of a given design will reflect the accuracy of the input, this ;
phase of the shock isolation design problem deserves a greater portion of the 3

designer's time than any other aspect of the overall problem.

A considerable program in the gereral area of nuclear blast induced ground

motions is currently being carried out by a number of govermment agencies and

i
¢
I
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However, to date a single consistent theory covering the several elements of

[P

ground amotion an?® real soils has not been forthcoming. Even a digest of the
theoretical and experimental data already developed would be of substantial volume
and, because of gaps in the data and internal contradictions would be of limited

value to designers.

In view of this situation the estimation procedures contained in this
section must be regarded as tentative, to be replaced with more accurate proce-
dures as the results of research effort become available. However it is believed
that since a substantial error must be tolerated in any event, a single internally
consistent approach that covers the major influences significant to the shock
isolation problem is desirable. In particular, if the effects of soil-structure
interaction and the possibility that isolators might be omitted are to be

considered in any detail, ground shock input wave forms are required. Since

o
:)b
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practically all of the published methods for making ground shock estimates are

directed solely toward estimation of the three numerical input paremeters required
for construction of a trapezoidal shock spectrum,considerable departure from

these methods has been necessary.

The difficulties inherent in the theoretical prediction of ground waves in
real soils ultimately hinge on the nonlinear, inelastic behavior of the soils.
Propagation velocity, energy attenuatiorn, wave diffusion, and permanent displace-

ment all are primarily influenced by these characteristics.

A procedure for determining the significant charanteristics of the input

wave that requires a minimum of soil data is presented subsequently. T “a

required are

1. the stress-strain curve of the soil (confined compression test)
2. the seismic velocities of the soil

the soil density

£ W

the percyclic damping factor

5. bedrock depth.

It is assumed that the dissipation process conforms with the percyeclic
damping theory. This theory postulates that a sinusoidal wave decays exponentially
at a certain rate per cycle. Thus the fraction of the amplitude that remains
after propagating through a distance of one wave length, as compared with the
initial amplitude of the wave, is a constant and is denoted by e_é. The theory
assumes that the speed of propagation and the percyclic decay rate for sinusoidal
waves are independent of wave frequency and stress level and dependent only on

material properties. For a waveform that is not sinusoidal, the waveform is

!
i
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represented by a Fourier intégral of sinusoidal components, each of which is

assumed to obey the pe-cyclic damping law independently. Each component, having
a different wave length, decays & different amount in “raveling a given distance
because it travels a different number of wavelengths. The waveform at any later

time is represented by a Fourier integral of the decaying sinusoidal components.

The percyclic damping theory, though basea on artificial assumptions, is
found to agree well with experimental dats and has found acceptance by leading
investigators in the field of stress wave propagation. Values  the logarithmic
detriment,d ,ranging approximately from 0.2 to 0.5 have been reported for granular

media. Some typical values are given in Sec-ion 8.

Thé desiéﬁ ﬁrocedure has been simplified somewhat by making the aésumpfiaﬁ”
that bedrock is infinitely rigid and perfectly reflecting. The combined effects
of thesé assumptions is slightly conservative. That is, the motions predicted
are somewhat greater than would be predicted if the exact physical characteristics

of the bedrock were taken into account.

Regardless of the energy dissipation characteristics of the soil, the
momentum of the ground shock wave is conserved as it proceeds through the soil.
Ultimately all of the momentum enters the underlying bedrock. If the effects
of geometric dispersion of the wave are neglected, the displacement of the bedrock

due to the momentum can be computed from the formula

I
= e h.l
y == (4.1)
where
y is the bedrock displacement

I is the impulse of the ground wave.




Though the waveform may be considerably changed by passage through the soil

and rock, since its momentum is conserved its impulse is conserved and is equal

to the impulse of the overpressure wave.

At the 1000 psi level, for a bedrock weighing 160 pounds per cubic ft. and
having a seismic velocity of 10,000 £t per second, & one megaton bomb would
produce a rock surface displacement of about 1.9 inches, geometric dispersion
being neglected; a 20 megaton bomb would produce a rock surface displacement of

about 5.2 inches.

However, in the bedrock the wavelength of the positive phase from the one

megaton bomb would be greater than 12,000 feet., The initial root of the product
of the two‘brihcipél radii of‘curvature of the shock front at the'lOOO.psi'regton“”“‘%“““
would be about T,000 feet, dependent on the soil wave propagation velocity. %
Therefore, geometric attenuation would reduce the surface displacement to about
1/l of the value computed above, or sbout 1/2 inch for the one megaton bomb and
1—1/2 inches for the 20 megaton bcmb, These figures are very small fractions of

; the total displacement of soil surface with respect to bedrock, Further, the

; soil displace.ent computed as a consequence of assumed 100 percent reflection

from bedrock more than compensates for these small errors.

4.1 The Input Wave Estimate

Determination of the input waves is carried out in S steps:

f 1. The overpressure wave is estimated.

% 2. The compression wave propagetion velocity 1s estimated.

2. The attenuation of the compression wave is estimated.
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k, The compound wave resulting from addition of primary wave and

bedrock reflection is estimsated.

5. The vertical and horizontel free field irput waves are estimated.

The above steps are considered in order in Sections L4.1.1 through L4.1.5,
Where desirable a brief discussion of the theory is included though in the main

the theory has been described in the referencss and is not repeated.

The reader is cautioned that the methods presented here are approximate
Studies now under way will provide more accurate data on subsurfagq waveforms,

Because of the importance of input data accuracy these data should be used for

applicable conditions when they become available.

4.1.1 The Overpressure Wave

In a serlies of classified reports Brode has presented theoreticslly determined
overpressure vaveforms resulting from a surface burst. In Reference 2 Brode
presents overpressure deta in unclassified form. Figure 4.1 was constructed from
the unclessifled data, some extrapolation belng necessary at the very high over-
pressure levels. The curves on Figure L.l enable a 5 point fit of the overpressure

wave between the limits of peak overpressure and 10 percent of peak overpressure.

The dashed curve gives the subtangent duration, the time at which the
overpressure has decayed to 1/e times peak overpressure. If the initial portion
of the blast wave were & true exponential, the subtangent duration would be equal
t0 the time lnterval subtended by the tangent to the overpressure curve at pesk

ovarpressure.
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Within the intervals between the points given in Figure 4.1 the waveform

can be taken as an exponential, the decsay constants differing from interval to

intervel. The notation and formulas are given in Figure 4,2,

Tt should be noted that the first derivative of the approximate curve

jumps at the transition points. Therefore accelerations should not be computed

from the approximation.

4.,1.2 Wave Velocities

The average modulus of elasticity and, equivalently, average wave velocities

of a real soll contribute the greatest factor of uncertainty to shock isolation

design. The material in this section is presented in an effort to enable the

- --designer to improve his estimates. It is emphasized however that no tests have — -

been conducted to prove or disprove the method though data reported for other

purposes do not contradict the approach.

In order to carry out the estimation procedure the data previously listed

are required.

Even if these data are only estimates themselves some improvement in the
accuracy of the input can be achieved over that obtalnable by simply taking the

compression wave velocity as 1/2 to 3/4 of an estimated seismic velocity.

Figure 4,3a schematically shows a stress-strain curve for a sandy soil.
Now, a pressure wave initielly of the same waveform as the overpressure wave
would be dispersed in propasgating through the medium, that i1s the peak would be
attenuated and would lag behind the "toe" of the wave which would be of zero

amplitude and prcpsgete at seismic velocity ey . Between the toe of the wave and
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the maximum the pressure would be continually increasing. Therefore, each element

of the rise would propsgaté at the instantaneous velocity c¥ defined as shown in

Figure 4.3a.

The relation between instantaneous wave propagation velocity, stress, strain,

and density is given as follows:

2 1 do
* = o 22
c 5 (%.2)
o,
where
c¥ = infinitesimal disturbance propagation velocity with

respect to particle motion at a pressure

e =  density &t zero stress

o = stress

€ = engineering strain
This is derived from continfiity and momentum conservation only and is independent of
stress strain laws. It is valid everywhere except at a finite discontinuity of
stress, i.e., a shock front. It should be noted that c* is the propagation
velocity measured in a coordinate system moving at the local particle velocity.
Therefore, to obtain the wavefront velocity in a fixed coordinate system the

particle velocity, v, should be added. This quantity is given by

O dqg
v={f po¥ (4.3)
o
.
where
P = density at stress O
c¥ = wave velocity with respect to particle velocity at stress o

Evidently, the particle velocity computation is lergthy for a nonlinear soil.




Since it i1s small in comparison with c*,less than 5 percent generally, the

computation of ¢ can be greatly simplified with tolerable error by approximeting

c = c¥,

Evidently, since the pressure pesk is continuously attenuated it will
propegate at varying velocity. For the conditions shown in Pigure 4.3a the
peak would propasgate with continuously inereasing velocity. It should be noted
that although the peak of the wave is continuously attenuated as it propagates
through the ground, at eny given point inm the soil the pressure continuously
rises to the peak without going through a hysteresis loop. Therefore, the peak

of pressure always propagates at the velocity defined by the stress-strain curve

A piot of the ratio c/cl can be constructed by measuring the slopes of the
stress-sfrain curve and taking the square roots of the ratios of these to the
slope at the origin. Since tne slopes only are measured and the plotted results
represent the roots of these, the error in the ratio c/cl thus obtained is lerss
than half of the error in stress at a given strain as given by the stress-st.ain
curve. The dashed curve ADF of Figure 4.4 would yield a velocity ratio curve

practically identical with that resulting from curve ABC.

+
Since the seismic wave velocity can be measured to within - § percent or
better accuracy the compression wave velocity can be estimated by this technique
+
to within considerably better limits than the - 20 percent resulting by taking

an average ratio,
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Three pressures are identified in Figure 4.3a: !
1. Py the peak overpressure, i
2. P, peak attenuated pressure at s burled structure,
3. Por pesk attenuated reflected pressure arriving at the structure,

When these three pressure values have been estimeted the corresponding instentaneous

compression wave velocities can be taken from a graph similar to Figure 4,3b. An

aversge value then can be chosen for computation purposes.

In order to estimate wave attenuation by the method of Section 4.1.3 the
compression wave propsgation velocity is required. Thus the method becomes one

of guess and check. An original guess corrected once should be sufficient to

- —- -arrive at consistent propegation veloeity and wave attenuatien faectors:— — -

|
|

The arguments leading to the estimation procedure glven above are valid as

long as the entire ground shock wave lies on a portion of the soil stress-strain

R R SRS O T TE NV Sy

curve that is everywhere convex upward.

P

If the stress-strain curve of the soil is concave upward the propagation
phenomena, are qualitatively changed. Inasmuch as all soils exhibit a concave

stress strain curve at high enough pressure this problem merits some considerstion.

Figure 4.5 illustrates schematically a generalized stress-strain curve
ABCDEF. The curve is convex from A to the point of inflection, D, and concave

beyond D.

In general we should expect that if a wave of amplitude p), were propagating
into such a material a shock front would quickly form. If the pressure maximum

were preceded by a rising pressure the stresses withir the interval of the rise
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time would travel at lower velocities than that at the peak and quickly be

overtaken., Since the overpressure wave Las an abrupt rise at the higher over-
pressures we conclude that the sharp rise ls conserved in soil if the air
induced ground pressure is above the point of inflection D. We repeat that
all real soils exhibit a concave region similar to DEF at pressures above some

critical level.

Looking at curve ABCDEF one is tempted to conclude that a decaying wave
having a sharp rise would be stretched out in propagating through such a soil
e.g. pressure pS in Figure 4.5 closely following peak pressure P, would move

at a slower speed and therefore the interval pl#-pS vt uld grow with time. However,

_the decay of the wave also propagates according to the peculiar laws of such

stress-strain curves and actual physical results differ greatly from this

intuitive conclusion.

Kolsky (Reference 3) and others have investigated the phenomena. The
results of these investigations predict wave behavior that differ markedly

from the intuitively anticipated behavior prese ted in the previous paragraph.

The principal physical effects that result in the qualitative peculiarities
of the propagated wave are two:
1. The velocity of propegation of a shoc< front is not given by Equation

(4.2); the derivative is meeningless at the shock front discoutinuity.

2. The velocity of propagation of the decaying portion of the wave follow-

ing the shock front is given by Equation (4.2) but the cerivative 99 chould be

de
taken on a hysteresis loop (FG of Figure 4.5) rather than on the envelope.

TO
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The accurate analysis of these phenomena is exceedingly complex and is still

under study by a number of investigators. However, if two simplifying assumptions

are me : a method for closely estimating resulting waveforms 1s [orthcoming,

simplifying assumption reasonably matches reality. It is

L. The hysteresis loops are shrunk to their centerlines and their
centerlines are all parallel to the tangent at zero stress and
strain., Therefore the propagation velocity on & hystzresis

loop is equal to the seismic compression velocity.
The second assumption may depart considerably from reality. It is

2. The stress-strain curve (ABCDEF of Figure 4,5) is the Hugomiot
of the soil. At very high pressures this assumption has been
found to be grossly in error for materials having definite,
definable properties. The error decreases as the pressure is

lowered.
The Influence of the second assumption will be considered first.

An elementary manipulation of the continuity and momentum conservation
equations results in Equation 4.4 for propagation of & shock front, if a shock

front exists.
N2
s (1-€2" (gz~oy)

N T ) (b

where
Oz and O3 are the stresses on the high and low pressure sides of

the shock frong respectively,

One




€z and ¢, are the engineering strains on the high and low pressure

sides of the shock front, respectively,
P is the density at zero stress,
and U¥* is the shock veloclty messured in a coordinate system

moving with the particle velocity ahead of the shock.

Agein, only a small error is introduced if the shock velocity measured in =
fixed system is approximated by U¥., Further, the term (1-62)2 generally can te
consiCered anity without serious error. Actually, this * m 1is equivalent to

Po .
and is equal to 1 if changes in soil density due to pressure are small

P2

rwenqugh to be neg;ected. Thus a slightly inaccurate but reasonsble approximation -

for the shock velocity is given by

reasonable approximation for the shock velocity is given by
5 1 (02-01)
U = P—O'm ()4-5)
Now, an arbitrary curve can not be teken as the locus of all pdirts

(Uo, 60), (01, €1), (02, &) for which Equation 4.4 is satisfied. The correct
curve, termed the Hugoniot, along with Equation 4.4 is satisfied also satisfies
the equation of conservetion of energy. If no heat were generated by the
pacsage of the shock front the static stress strain curve and the Hugoniot would
be identical., However, in any real material heat is generated by passage of a

shock front. Therefore, for real materials, the curves differ.

-3
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However, beyond the near crater region the heat generated by passage of the

ground shock wave is small, Therefore, the assumption that the stress strain
curve is the Hugoniot is not unreasonable. The reader should not be deluded
into believing that this convenient argument indicates that differences between
stress strain curves and the Hugoniot actually are negligible, Possibly the

best comnter argument is that dynamic stress strain curves lie between the static
curve and the Hugoniot. Nevertheless, it is a far better approximation of a

real soil than the homogenious, isotropic, elastic medium of tlie theory of

elasticity.

Now consider a wave having en abrupt rise in pressure from pl to pu (see
Figure 4.5). In view of Equation 4.5 the provagation velocity of the dis-

continuity (shock front) would be c, not c Also we note that portions of the

e
wave at pressures below pl would be propagating faster than the shock front.
This brings out the first qualitative peculiarity of wave propsgation through a
medium having a concave stress strain curve. A shock front 1s conserv. . but is
preceded by an ever increasing precursor. Also we note that if the shock front
decayed (to, say, Py of Figure 4.5) the maximum amplitude of the precursor would

increase. If the pressure decreased to pcr precursor and post shock wave would

merge and the shock would vanish.

Now consider the decaying portion of the wave bebhind the shock front. It
follows a hysteresis loop and therefore is moving at higher wvelocity. Thus the
decaying of the wave overtakes the shock front and the latter is continuously
attenuated. A consequence of the assumption that the wave velocity on any

hysteresis loop is equal to the seismic velocity is that the rarefaction wave

73

RO TRV oy B Mt DRt WY = E

{




behind the shock front moves at constent, seiemic velocity regardless of the

position of the shock front on the stress strain (Hugoniot) curve, Actually,
laboritory tests show that the seismic velocity does not remain constant as
confining pressure is increased. Generally, the seismic velovity incresses (e.g.

Reference 11, page 57).

In Section 4.,1.3 it is shown that the higher velocity rarefaction wave rapidly
attenuates peak pressure. Therefore the error introduced by setting the "hysteresis
velocity" equal to the seismic velocity has the net result of decreasing predicted

attenuation, ar error on the side of safety.

In summary, the shock propegaetion velocity in a soil having a concave upward
stress rtraln curve should be as determined from the slope of the secant drawn on
the stress strain curve between the pre-shock and post shock stresses, analogous
to line BF and velocity . of Figure 4.5. Since the peak stress is attenuated

by the rarefaction wave the value of propagation velocity will vary with time,

4.1.3 Compression Wave Attenuation

The percyclic damping theory is based on artificial theoretical assumptions.
Its three salient virtues are:
1. It checks experimentally obtalned data with excellent accuracy.
2. It is simple to apply, to both theoretical and practical problems,
3. The damping constants for at least a few real soils have been
measured and reported in the geophysical literature. (These are

given in Section 8.)
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The +riter of this report believes that designers w.ll sgree with him that

number 3 above 1ec the theory's most sterling virtue.
The elements of the theory are given in Section 4.0 of this 1eport.

Weiner (Reference 10) has investigated the influence of the theory on the
one dimensional propagetion of simple pulses. The data he reports are directly
applicable to the ground shock problem. Figures 4.6 through 4.9 are taken from

"ot

Reference 10. In these figures "'n" is the number of initial pulse widths

propagated.

The dimensionless equation for pulse form after propagation of n initial

pulse widths given by Welner for the initially triangular pulse is

2
1 -1 e %E on (f"r'q) + (2s-1)°
r(s,m) = = (1+2s) ten 5= 5 + = log, 5 (4.6)
G+ (bs7-1)  2r (%?) + (28+1)
In the above formula
s = ciztaace from center of pulse measured in initial
pulse widths
n = pulse propagation distance in initial pulse widths
) = percyclic damping constant (per cycle)

i

r(s,n) dimensionless ratio of wave amplitude to initial amplitude

at centerline

A plot of the ratin of peak amplitude to initial pesk amplitude as a function

of pulse propagation distance is given in Figure L4.10.
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Now, we notz that the percyclic demping theory is developed for materials

having a constant wave propsgation velocity and we intend to apply it to nonlinear
media having varisble propagation velocities. Objectlions certainly can be raised
but we point out:
1. A more spplicable theory of comparable simplicity does not
sppear to be avellable.
2., The percyclic damping theory has given good results in geo-

physical work where the media also are nonlinear.

In the following paragraphs a method for estimating compression wave
attenuation for soils having convex upward stress strain curves is developed,
based on the percyclic damping thenry. The sttenuation of peck pressure in soils

_ having concave upward stress strain curves 15 50 rapid that a separate damping

computation would add no accuracy to the waveform determination.

Figure 4.11 shows a typical overpressure wave constructed from Figure 4.1.
(A 1 MT bomb and 500 psi have been used for the construction). The wave is
equivalent to the sum of the triangular wave and the "difference” wave showr.
Now the difference wave is of long wave length and any high frequency Fourier
components which it contains are of low amplitude., Therefore it will be attenuatec
cnly slightly in passing through the soil and the attenuation that does occur will
affect only the point where the trailing edge of the triangulasr wave joins it.
The triangular wave, on the other hand, has & short wave length, and contains a
large portion of its energy in high frequency components. Therefore it will be

gttenuated rapidly. We make the approximation that all of the attenuation occurs

PR S g e

in the triangular component of the wave.
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The duration of the triangular wave has been set arbitrarily. However, the

value chosen makes the central angle of the peak of the triangle equal to the )
central angle of the peak of the blast wave, Since the high frequency components
of the peak are most strongly attenuated the subtangent duration appears to be

the best cholce for the triangular vase.

To apply the theory:

1. Determine wave path length from surface to structure amnd surface ‘
to bedrock to structure. The ungle between the paths and vertical +

is equal to the Mach angle of the conpression wave,

2. Determine the percyclic damping constant., Test data should be

s e - e

S used if avallable; otherwise estimate with the ald of data in

Section 8.

3. Determine the sut+angent duration of the overpressure wave

from Figure L4.1. :

L, Determine the subtangent lergth by multiplying the subtangent
duration by the compression wave velocity. (This will be a
guess and check procedure in connection with determination of

the compression wave velocity per Section 4.1.2).
: 5. Determine n for the direct path and the reflected path.

6. Compute %& for direct path and reflected path and obtain

R

attenuation factors from Figure 4.10.

A e

-

T. Determine the rise time by computing delay from time of

arrival of toe of wave (moving at velocity cl) to time of

83




arrival of pesk (moving at velocity c). If L is the path

length and tr the rise time
1 1
Ty = L(E - )

The curve of the rise can be interpolated between the curves
of Figure 4.12 (Figure L.12 has been constructed from Figure

4.9 by continuing the meximum slope of Figure 4.9 curves to

the "s" axis).

According to the elastic theory lateral motion of a soil particle should

stop shortly after engulfment by the shear wave. Field test records obtained in

Nevada however do not exhibit this ebrupt terminaetion of the horizontal velocity.

This behavior can be rationalized if it is assumed that the rate of energy
dissipation of shear waves is considerably higher than that of compression waves.
According to the elastic theory the shear wave stress is considerably lower than
the compression wave stress in the superseismic region. Thus, if the shear wave
were attenuated st a greater rate than the compression wave its intensity raepidly
would be reduced beiow the level of the wave anomalies introduced vy the nonlinear

characteristice of the soil and the argument based on elastic theory loses its

force.

Now, precise numbers are nol available, but it 1s known that shearing
distortion of particulate soll dissipates energy much more rapidly than pure
compression. Thus, though the Nevada test site can hardly bLe considered typical
the we. ght of evidence indicates that, lacking test data to the contrary, the

shear waves can be neglected in shock isolation design.
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4,1.4 The Input Wave

The input wave determination for convex and concave stress strain diagrams

are considered separstely. ©Specific examples are used to illustrate the methods.

Case I Stress Strain Curve Convex Problem

A structure is to be placed 35 feet below surface; bedrock is 120 feet
below srrface. The design overpressure is 300 psl and the design bomb size is

10 MI'. The seismic velocity is

¢, = 2700 ft/sec.

The average soil density is 120 lbs/ft3. The soil is a lightly cemented sand.

The percyclic darping factor is estimated (Section 8) to be 0.20.

The aversge stress-strain curve of the soil is estimated to be as shown
in Figure 4.13. [The soil chosen for this example might almost be classified
as a soft rock., It has been chosen to illustrate how a slightly curved stress-

strain curve can modify ideal elastic results, ]

Develop the estimated pressure time curves at the structure for both incident

and reflected waves.
Step 1 - Con:truct the overpressure-time curve (Figure L.1k)

From Figure k4.1

At 300 psi and 1 MT At 300 psi and 10 MT
P = 150 psi gy = 31 ms g = 67 ms
P = 110 psi t, =55 t, =18
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Figure 4.13 SO01L STRESS-STRAIN CURVE
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At 300 psi and 1 MT At 300 psi and 10 MT
P = 90 psi t3o = 75 t30 = 161
P = (O psi too = 137 tog = 295

Construct the c/cl curve corresponding to the stress-strain curve.

(Figure 4.13b)

Step 3

Estimate the propagation velocity. From Figure 4.13b the range of c/cl
between 100 and 300 psi is about 0.85 to 0.65. Accordingly estimate ¢ to be

c = 0.75 x 2700 = 2000 ft/sec.
Step 4

Estimate the wave attenuation. At 300 psi the air shock velocity is
4.8 ft/msec. Therefore the first estimate of the Mach angle of the wave is

¢ = sin T % = sin”t EEE = 2, 6°

and sec¢p = 1.1,

The wave path length from surface to structure is about 38 ft. and from

surface to bedrock to structure is about 226 ft. (see sketch).
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—_— ——et- 1, 8 ft/ms
ol 6°
38 ft 35 tt
[ tructure #
2 ft/ms
' b ft 85 ft
61 ft
65.4° 65.4°
Bedrock

TS T 777777/

The subtangent duration of the wave is (Figure 4.14) 118 msec. Therefore

the subtangent length LS is about

L, =¢ ts =2 x 118 = 236 ft.

The wave path lengths in terms of the sul tangent length are

38/236 = 0.16

for the direct wave n

L}

226/236 = 0.95

for the reflected wave n

and on/m is (6 = 0.2)

for the direct wave 0.01

g g

for the reflected wave = 0.06

a0
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From Figure 4.10 the attenuation factors are

for the direct wave 95%

for the reflected wave T1%
Peak attenuated pressures are then

for the direct wave 285 psi

for the reflected wave 212 psi
Step 5 - Correct Wave Velocity

Entering these pressures into Figurrs 4.13 a and b w. see that a better

average for c/cl is 0.65. Taoen

¢ = 0.65 x 2700 ft/sec = 1750 ft/sec

Recomputing Ls, nl, attenuation and pesk attenuated pressure (see sketch) we

obtain
L.8 ft/ms
i
Y 21.5° )
62 ft e o 3 T
4
Structure [}
67 £t 91.4 £t 85 £t
1.75 £4/ms
68.4° 68.4°
Bedrock
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dn Attenuation

Ls n ;r- Factor Attenuated Pressure
Direct wave 206" 0.18 0.011 5% 28l
Reflected wave 206' 1.0T 0.07 69% 207

These velues check the corrected wave propagation velocity, 1750 ft/sec.
Step 6 - Estimate Rise Times
The rise times are computed from

for the direct wave tr = %é - %Q = T.6 ms ‘

1 ¢

for the reflected wave t_ = 20 _ 20 _ 5 g ;

r c e )

|

-Step 7 - Estimate Arrivel Time of Reflected Wave et

The distance traveled by the refiected wave from tke time that the structure
is engulfed by the direct wave until the reflected wave reaches the structure is

about 158 ft. The toe of the wave, moving at seismic velocity will travel this

distance in

Step 8

Sketch waveforms (see Figure L4.15).

Step 9

Determine maximum impulse in soil below structure.

' Time of impulse = = 9{-“ = 90 ms
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The maximum impulse will be the maximum contained within any 90 msec

period. This is determined from Figure 4.15 on the pressure sum curve, The
meximum impulse 1s shaded. Within the limits of accuracy imposed by our propaga-

tion velocity, peck dicplacement is given by

I
" e
where
¥y = peak displacement
I = impulse (shaded area Figure 4.15)
P = soil density
c = average wave propagation velocity.

Case II Stress Strain Curve Concave Problem

A structure is to be placed 35 feet below surface; bedrock is 120 feet
below surface. The design overpressiure is 1000 psi and the design bomb size
is 10 MI'. The average soil density is 115 lbs/ft3. An estimate of the stress-

strain curve below 1000 psi is shown in Figure 4.16

Develop the soil displacement and pressure time curves st the structure

level.

The basic one dimensional wave equation is independent of material stress
strain characteristics. If compressive stresses are considered positive, the

wave equation is

,'))‘
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(S2),

The method suggested involves a series of steps leading to a plot of - é;&)t*

for a particular depth, h, as a function of time between to* and ts*, the times
at which the wave front and shock front respectively reach the point of interest
at depth h, Integration of this plot yields particle velocity, (%%;)x , during
the time interval t ¥ < t% < t *. A special calculation is required to find
the increase in momentum due to the shock, and the influence of the unloading
portion of the wave can be evaluated using linear elastic theory, since a

constant propagation velocity is assumed in the unloading region.
Step 1 - Construct the overpressure-time curve (See Figure 4.17)

F1 m Figure 4.1

At 1000 psi and 1 MT At 1000 psi and 10 MT
P = 500 psi tSO = 8.3 ms tSO = 17.9 ms
P = 368 t, = 15.7 t, =33.9
P = 300 t3O =21.8 t3O = 47
P = 200 tog = b tyo = 95
P = 100 to = 131 tig = 283

*




300

250

150

time ms

Figure 4.17 OVERFRESSURE-TIME



! Step 2

On the soil stress-strain dlegrem, locate the peak alr overpressure and

the criticsl stress (i.e., the stress below which a shock will not propagate,

where the stress strain curve has a point of inflection),

upper and lower points of several intermediate shocks.

carried

out in Figure 4,16,

Alsc locate the

These steps have been

The following results are obtained from data on this figure.

c, = k500 ft/sec

Shock Pesak Precursor Pesk
1000 psi 105 psi

750 135

500 155

400 175

300 180

200 200
Step >

AP

895 psi

615
3ks
225
120

000

A€
oLt

.0k2
.032
.025

.018

Shock Velocity, Us
870 ft/sec
762
650
595
515
370

Plot the secant shock velocity as a function of the upper shock stress

level.

This is shown in Figure 4.18.
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Step U

Plot the air blast overpressure on a function of cot. The plot of pressure
versus cot is the waveform that would exist in the soil 1f the entire wave

propagated at velocity c_. This is shown in Figure 4,19,
Ste

Determine the time t* required for the shock front to penetrate a 4’ ‘tance
x. Approximate the shock front veloclity during a time interval At*¥ with the
average of the secant velocities at the initial and final shock pressures for
the interval At*, During the time interval At¥* the toe of the wave moves a

distance c0 At* and the shock front moves a distance U, , At¥* whcre Ui is the

iJ J

where

J

At* = t%, - t*,
J i

Thus during the interval At* the shock front moves backward with respect to

the toe of the wave a distance
(coti - cotj) = A(cot) = (co - Uij)At*

distance being represented as c_t as used in Step 4,

Solving for At¥*

ti_tj
K = comrem———
At T,
1 - —d

)

o

For any point of closely spaced time instants ti and tJ. the corresponding
peak pressures can be read from the graph of overpressure versus time. The

ratio U’ij/co may be read from the graph of Step 3., Also the corresponding

100
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lower shock pressure can be read from the graph of Step 2, Thus a graph of
upper and lower shock stress values plotted against time t* can be constructed.

The data is shown in the following table; the plot is shown in Figure 4.20.

Peak t At Average 1 At* t* Ax X
Pressure (ms) (ms) Shock U, (ms) (ms) (£t) (£%)
(psi) Velocity, U, 1 - —c—i

(£t/sec) 0
750 9 9 816 1.22 11.0 11.0 9.0 9.0
500 18 9 T06 1.19 10.7 2L.7 7.6 16.6
400 28 10 623 1.16 11 6 33.3 T.2 23.8
300 47 19 555 1.1k 21.7 55.0 12.0 35.8
200 95 L3 Lh3 1.11 53.5 108.5 23.6 59.4

During the interval AiL* the shock front progresses a distance

Ax,. = c,., At*,
ij ij i

J
Therefore a graph of the upper and lower shock stress values can be plotted

against the distance t ie shock has penetrated. This is done in Figure L4.21.

Step 6

Draw the waveforms corresponding to the time to* = h/co (the time the
wave front first reaches tne structure) and x = h, and several ot.er inter-
mediate waveforms. This is shown in Figure L.22
Step 7

Find the slope of the instantaneous stress waveform at the depth h, for

each time, t*, and plot this slope against t¥*.
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1000 =

800 = !
t* = 7.8 me (the time wavefront first reaches structure)
600 - t* = 15 ms ;
Stress %
{psi) i
* = 30 ms
400
t* = 45 ms
t* = 55 ms (the time the shock
front reaches structure)
200 o

Relative Position of Structure

] l ¥ \J T
100 200 300 Loo 500

Cot

Figure 4.22 WAVEFORMS AT DIFFERENT VAIUES OF t*
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1,
The particle velocity, 5'(§¥¥)x » 1s the shaded area between t ¥ and t¥,

for t * < t* <t *. This is shown in Figure 4,23,

Step 8

The velocity after the shock can be calculated from the expression

A2 - p? e (1)
:, _\/.Esp(pj 2,1+ (5,")

where

Step 9

1

velocity immediately before the shock
velocity immediately after the shock
mass density (assumed constant)
stress lmmediately before the shock

stress immediately after the shock

SN
ej - ej'

strain immediately before the shock

strain immediately after the shock

(4.8)

During the unloading portion, beginnirg immediately after the shock, elastic

theory can be used, so

1 ,0p 1,0 _ /0%
G Nl MG =N
.‘. 2 = % - u
u J pc0

106




-3
*
123
e+
o
= "m
S 5
:
£
oz &Y
H\ —~lQ W
* i) o -
e o
jaV]
/ \4’
, [
| o 3
& &0
-
e
\
/ o
|~
*
: )
FE)
T ] Y T
o) o
8 S
J 298
ANMWQ%V _ *pAmx.mv = - ANPHIV SATYBATISI SSo138 TeT4RdS




B L

where

2u = velocity during the unloading phase

éj = velocity immediately after the shock

pJ = stress immediately after the shock

px1 = stress during unloading

p =  density (essumed constant)

c, = velocity of propagation, computed from the initial tangent

modulus and assumed constant, thereby implying linear elasticity

4,1.5 Verticel and Horizontal Free Field Inputs

Strictly speaking the vertical velocity would be obtained by multiplying

© +he ¥e€locity curves developed for Cases I and iiwéwaecfiaﬂ'h;i:ﬁ“ﬁngie”éosine

of the Mach angle. The Mach angles are small however and this refinement

therefore is smaller than the errors already included in the curves.

The horizontal motion components are more difficult to estimate., It has
been pointed out already that test records diverge grossly from the predictions
of elastic theory; the shear wave does not terminate horizontal velocity as

predicted by elastic theory.

I{ suspension gystems are used,we have found that the horizontal systems
should be of low frequency. For this case the only significant input is the

totel horizontal displacement.

If shock isolation is not used, dependence being placed on equipment rugged-
ness and the inherent "isolation" provided by soil structure interaction only the

initial portion of the horizontal velocity curve is required. If ruggedized

108
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equipment can resist the onset of the ground shock wave it can subsequently

resist the onset of the reflected wave.

The initiel horizontal velocity can be obtained by multiplying the predicted
vertical velocity by the sines of the appropriate Mach angles. Since the Msch
angles are small at the higher pressures the resulting velocities will be small.
At some pressure, not yet known, the directly transmitted shock will domirste == _

the horizontal component of air induced motion.

The total horizontal displacement is equal to the area under the horizontal x
velocity curve, However, it must be remembered that the horizontal component of

reflected wave velocity adds to the direct component. In a purely elastic medium

k

&

displacement, ) would be given by

X, = %% sin ¢ i
where
I is the impulse of the aeroshock wave,

ERE SFCAEY

[0 is the Mach angle of the ground shock compression wave,

It does not seem intuitively reasonable though to consider that after
vertical motion of the structure reaches its maximum (at arrival of the reflected
wave ) horizontsl motion continues for any length of time. For this motion to
continue, the column of soil between structure and bedrock would have to continue

to shear, a process that rapidly dissipates energy in real soils.
Therefore we take as a reasongble approximation of peak horizontsl displacement

2 =gin ® z
h max vV max
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where z and 7z
h max & “v max

are the max*mum components of horizontal and vertical
motions respectively. This formula is equivalent to
% max ~ U “v mex
where
] is the aeroshock velocity
and o is an average wave velocity.
A value of ¢ can be computed from

D

p%

¢ =

av
This approximation yields a horizontal to vertical displacement ratio on

the order of 1/3 for Nevada Test Site soil and overpressures in the 100 to 300

psi region. = - R T

L.2 Approximate Estimates of Input

If preliminary estimates of rattle space requirements must be carried out
without the benefit of site information it is suggested that the following approach

be used.

1. Estimate bedrock depth from topographic maps. If the site is
unknown guess bedrock to be 150 feet below surface.

2. If the general class of soil (clay, sand) is known estimate
compression wave velocity (see Section 8). If the soil is
unknown guess & wave propagation wvelocity of 1000 ft/sec.

3. Estimate times required for wave to travel from surface to

structure and surface to bedrock to structure.
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L, Estimate wave decay according to percyclic demping theory. A

conservative value of the damping coefficient, 5, can be taken
as 0.2. (It will be nigher for most real soils.)

5. Estimate the maximum impulse, I, that can be encompassed between
structure and bedrock. This will occur at about the time the

reflected wave reaches the structure.

6. Estimate maximum vertical displacement, zv max’ from the formula

I

Z I
v max fc

S

T. Estimate maximum horizontal displacement 2y max’ from the formula
=L i
%y max U o , , .
where U is the aeroshock front velocity.
Silos are somctimes founded on bedrock. If the silo shell does not contain

girth expansior joints the silo vertical motion will be equel to bedrock vertical

motion. The latter can be estimated conservatively as follows:

1. Estimate bedrock seismic velocity, .. If bedrock is unknown
guess it to be 10,000 ft per second.

2. Estimate bedrock density. If bedrock is unknown guess the
density to be 150 1lbs per cubic foot.

3. Estimate the impulse of the overpressure wave, I.

L, Compute vertical displacement

2 =1 I
v max 2 Pcs

The factor % is included to account roughly for geometric dispersion of the

wave. Its actual value generally will be more nearly 1/3 or 1/4.
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SECTION 5

SOTL-STRUCTURE INTERACTION

A simplified analysis of soll-structure interaction is given in Appendix A.
Even the simplified analysis, however, 1s quite complex to apply. In this

section the main results of the analysis and estimation procedures accounting i

for the principal influences of the interaction will *: given.

The most important prediction of the interaction study is that the significent

modes of most structures in real soils will be damped near critical; the lower

T A | e DA ehons NI a

modes will be over critically demped. Thig then implies that the structure will

o 6 AR

follow the soil motion quite closely except within an interval equal svproximately

to the first half or three quarters period of undsmped vibration of the structure.

A second consequence of the interaction study is that the rise time for the :
forcing functions of the lower modes (translational rigid body mode and first |
bending mode) is on the order of 3/h to 1 1 anes the transit time of the ground
shock wave over the structure. Further, it can be deduced by inspection of
Equations (A-19) and (A-24) (Appendix A) that the initial rates of rise of the q
forcing functions for the highe: order modes are no grester and generally less
than the rate of rise of the Sirst pending mode and rigid body mode (the initial
rates o1 rise of these are identical). Very shortly after initial impingement
of the ground shock wave on the structure the rates of rise of the higher order
foreing functions become less than the rates of rise of the rigid body and first
bending mode forcing function. Further, the maximum amplitudes of the higher

order forcing functions decrease rapidly with increase of modal index. (A
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review of Appendix A.4 with attention directed toward the physical meening of the

quantities involved will make this evident without mathematical menipulation.)

The response of the structure modes to their forcing function alsgo decreases
repidly with increase of modal index. Thus we intultively expect that the
significant motion of the structure interior will depend only upon the rigid

body mddes and tihe first few distortion modes.

It becomes a practical impossibility to draw general conclusions from purely
mathematical deductions because of the complexity of the problem. Accordingly,
a computer program was set up and the relative responses of the various modes for

a silo-like siructure were determined for a range of parameter variations. (The

computer program and detalled results obtained are included in the firstuinterimf".wrrwf

report on this project. They are not repeated in this report.)

The results of this investigation indicate that only two modes need be
considered for developable structures:
1. The rigid body mode.

2. The first deformational mode.

An elementary manipulation of the formulas for the soil resistance factor
K and the modal damping factor 61 shows that for reinforced concrete shells the

damping factor for the rigid body mode, 6r, lies between the limits

0.6V§< 6 < o.75\/§ (5.1)

R/h is the radius to thickness ratio of the shell. (For steel shells the limits

of the coeflicient are 0.33 to 0.42.)

-
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Thus even for a truly massive concrete shell having an R/h ratio of only 4

the rigid body mode is overcritically damped.

If a structure is so stiff that the first deforuational mode is less than
critically damped the deformation of the mode is insignificant when compered

with the rigid body motion and may safely be neglected.

5.1 Summary of Interaction Theory

The theory developed in Appendix A will be summarized. Since this summary
wiil be concerned conly with the rigid body mode and first deformational mode the
subscripts r and d respectively will be used to denote them. A subscript "i"

will be used to denote a mode in general.

The amplitude, Ti’ of the response of the ith mode is given by the equation

T, +2.0 1 +0°0 =T, (5.2)
where
Ti is the forcing function for the ith mode, to be defined subsequently
Qi is the circular frequency of the ith mode

and 61 is the damping factor for the ith mode.

For the rigid body mode the circular frequencyQr + given by

K
2_ T
Q°== (5.3)

and

_ Pc
L o 54




unit mass of the shell

c = soll compression wave velocity

P = s0il unit mass

v = Poisson's Ratio of soil

Ar = a characteristic length of the shell.

The K factor is difficult to estimate. Though the simplified equations
introduce a constant to account for the soil displacement resistance it is in
fact, even for a linear, elastic medium, a variable depending upcn the medium
characteristics, structure geometry, and manner of loading the structure. For
& spherical shell, which can be investigated analytically, the K obtained for
uniform radial expansion of the sphere is twice that obtained for a rigid body

translation of the sphere.

The average K factor computed for the first deformational mode lies between

these limiting cases.

It is suggested that in actual computation two K factors be used, even

though the derivation of the basic equations is based on a single constant value.

Equation (5.4) is based on the theory of elasticity so it can, at best, be
only approximate for real, nonlinear soils. The characteristic length kr is

given approximately by the equation

=3V
Ar TR (5.5)
where
v = structure volume

A = structure surface area.
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Equation (5.5) is accurate within the approximatlions of the theory of
elasticity for spherical shells and any other closed shells so proporticned that
a small, rigid lateral displacement of the shell induces a uniform stress in the

direction of displacement at the soil-shell interface.

If experience computing static foundation displacements can be considered
indicative of the accuracy of Equations (5.3), (5.4), and (5.5) then they must
be considered to have an overall uncertainty factor of ! 50 percent or so.
However, we simply have not enough experimental evidence available yet to justify

development of more precise formulas.

The Kd factor for the first deformationel mode can be taken 50 percent

higher than K .

K. =1.5K (5.6)

02, =0, + (5.7)
i where
% (Dd = circular frequency of first bending mode in vacuum
(See Section 8)
The damping factor 61 is defined for both modes
o =5 a (5.8)




The forcing function, Ti, is given by

1
Ty = -ﬁ:f 5, 5, da, (A.24) »
A 1

the norm, Ni’ is given by

N =m/ 8 ¢ aa, (A.25)

and the input vector, Ei, by

Py =1+ D +KZ+pe oz (A.19)

In these formulas

structure area 2

A =

i é& = . vector mode i “i«
n = normal unit vector 1
; = free field pressure tensor 5
z = free field perticle displacement. %

Evidcently, any system of solution that retains even the major influences
of these equations is bound to be complex. It is possible though to deduce the
principal influences of the interaction from critical examination of the equations
and to frame a much simpler method of solution that is accurate enough for most

shock isolation computations,

5.2 Simplification of Interaction Procedure

We begin by considering the input vector 51’

Appendix Section A.4 is devoted to computation of p.. Following the method
1

presented there we envigion the structure to be enclosed by an imaginary rectangular




parallelepiped having two faces parallel to the "plane" of the advancing ground

shock wave. Then the vector 51 can be represented as six scelar forces perpe-di-

cular to the faces of the parallelepiped.

For the rigid body motion the forces on the four surfaces that are not

parallel to the plane of the shock wave contribute nothing to the forcing functionm.

Un the two remaining surfaces the scalar pressures pl can be simplified to:

For the windward surface

pl =p + pcz + Krz

and on the leeward surface

P, = P - pci - Krz

(5.9)

(5.10)

where p is the free field wave pressure and 2 is the free field velocity. The

free field displacement z can be obtained by integration of the %z curve.

At any instant pcz is equal to p. However, in order to carry out the

interaction computations an average value of pc must be chosen,

Since the shapes

of the p and Z curves may differ markedly the distinction between the terms has

been retalined.

For the deformational mode the ;calar pressures on the four parallelepiped

surfaces perpendicular to the ground shock wave are

Pl = - Vp
where

v is Poisson's Ratio.
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Now let us examine the result of evaluation of the forcing functions T}
and Td' The vector mode ¢r consists simply of a unit vector in the direction
of the advancing ground shock wave. Therefore its scalar projection on the
windward face of the parallelepiped is simply +1 and on the leeward face is -1,
Thus if the transit time of the wave moving over the structure were small and

the rate of decay of Py not too great, after engulfment the forcing function T}

would be given to a very close aepproximation by

~ 2A . .
T, " ﬁ; (pcz + Krz) (5.12)

For the rigid body mode

A 1 -
T =& (5.13)
T
so
~1
T T2 (Pt + K z) (5.1k)

We note also that since Ti is an integral over the surface of the structure,
peaks and steps will not appear in Ti' The abrupt onset of pressure cannot be
applied simultaneously to the entire surface of the structure or even to a major

fraction of the surface. The effect of the integral is to smooth out irregularities

within an interval equal *to the transit time,

Since the component of Tr contributed by p cancels out at any time when the p's
on opposite sides of the structure are equal, the only contributions of p to the
forcing function occur when there is a rapid change in the magnitude of p within
an interval equal to the transit time. If such rapid changes exist they are

averaged over the transit time interval and make small contributions to Tr.
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At this point it is of interest to compare the transit time with the period

of vibration of the rigid body mode. For & horizontal cylinder the transit time

1s gi b 2R
ghven by bty = (5.15)

C

The period of vibration, t,, of the rigid body mode is

¢ = Zﬂ-l::?- (5.16)
r

For a cylinder, this is equivalent to

1/2

_ 2R (hl/2 |3 Yo |

t,== () [2 (140) % (5.17)

Thus the ratio tr/tt is
ey - (@213 (144 X M2 (5.18)
t, "R 2 e 2

where

h = shell thickness

R = shell radius

'yc = shell density
'ys = soil density
T = Poisson's Ratio of soil.

Wor a concrete shell and a Poisson's Ratic of 0.3

ct

e (/2 (5.19)

Thus for a cylindrical shell having a radius to thickness ratio less than

25 the transient time is less than a period of vibration in the rigid body mode.
This mode is overcritically damped. Therefore variations in the T, curve will

not strongly lnfluence the resulting response curve. Accordingly, the influence
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of p on the rigid body mode can be neglected and only the z and Z components

consldered.

In accordance with the approximation u.lready adopted (Equation (5.6))
Equation (5.7) can be rewritten

2 2 2
= + 1.5 5.20
Qg=wg Q_ (5.20)

Substituting the expression forc1>2d (section 8) and {Fr

: Py -3 &P 7+ dey 6D D@ (5.21)
where
) ) Vg = soil density
1@ = shell density

c

o sonic velocity of shell materisl

and other symbols are as previously defined. Then the ratio td/tr becomes

ﬂ(%)l/e

tq
T R i/2
¥ [ﬁisy 3 (%)2(-3)3]

Taking for a concrete chell

(5.22)

L}

¢ = 11,000 ft/sec

c

Y, = 150 1bs/ft>
and for soil
¢ = 1500 ft/sec
) Y = 115 1bs/£t3
v = 0.3
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N ‘3)1/2
- 4.1 ‘R (5.23)
ty [E + shso(gaéll/e
The damping factor can, after some manipulation, be expressed
t
-1 (RyVsy. 4
% = 5w WG E) (5.24)

These have the values

R/h = L 7 10 20
tg/t, = 0.2 0.38 0.51 0.71
6 = 0.18 0.355 0.68 1.88

Examination of the table shows that for some possible values of (R/h) the
damping of the first vibrational mode is considerably less than critical.
However, we note also that for these cases the period of vibration is only a
fraction of the transit time and tle refore the response will closely follow the

input.

The vector mode Z& ie symmetrical. Therefore, the velocity and displacement
terms cancel out except when these have a rapid change of value within the interval
of the transit time. Even these rapid changes will not markedly influence the

resulting response curves.

Teking ©» to be 0.3 the forcing function'rd becomes after engulfment

~0.27 p
e T Tm (5.25)

During the initial half of the engulfment time all three components will
contribute to both forcing functions. Therefore, if the initial rise proves to

be significant it is suggested that the amplitudes of L and 7 , be computed at

d




1/2 tt reflecting *he three components. Smooth curves starting at zero, passing
through the computed points at 1/2 tt and smoothly merging with the values ac tt
then can be sketched.

It is noted that if Equation (5.2) is divided through by 921, then the
term TiAlzi has the dimensions of length and at some distauce from the origin

will represent the terminal displacement that the damped response asymptotically

approaches. In this form the relative importance of the rigid body and deformational

modes can be easily judged.

Then, subsequent to engulfment, the equation for the rigid body mode

forcing functions becomes

T

r . 30 v, (5.26)
02 c A
r
vhere
v = structure volume
A = structure surface area
v = Poisson's ratio
c = average compression wave velocity
VA = free field particle velocity.

Now the expression

v

3{1+v) "

is of the same order of magnitude as the structure "radius' regardless of

R e R o s

structure complexity. Thus the first terw of Equation (5.26) is approximetely

equal to

Ri

c
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From a typical example 1t can be shown that the meximum contribution of
the veloclty term to the displacement is on the order of 1 inch for & 30 ft
diemeter cylinder and 1500 ft per second scil. The maximum displacement is about
18 inches for tle same structure; thus the velocity term contributes a displace-

ment increment only 5 percent as great as the soll displacement term, z.

The deformational motion is more diff’cult to investigate because the

modal geometry 5& varies between structures. For a horizontal cylinder the

equation beccnmes

T

[T

. 0.27gp R
- c Y
0%y 4 2 [g &3 9% <-1—13)<7§->]

(5.27)

no

For a reinforced concrete sheil of R/h = 7.5 and ¢ = 1500 ft/sec, the torm in

brackets becomes asbout 0.66. Therefore

-
d _ p(psi

o2~ 1000 [in] (5.28)
d

for a 30 ft diameter shell.

This is a smell displacement in comparison with the rigid body displacement.
Another fact emerges, however, that is of practical importance, The displacement
indicated by Equation (5.27) is almost exactly the displacement suffered by the

structure surrounded by the soil and statically loaded.

In Section 5.3 a simplified design method based on these observations is

given,
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5.3 Simplified Design Method

It is again pointed out that this design procedure is necessary only if

isolators are to be omitted or if the more desirsble and economical low frequency

systems are not used. A method for determining when isc’ators can be omitted is

glven in Section 7.

The interior structure motion consists of two components:

1. A rigid body motion Tr

2. A deformational motion 'I'd

The rigid body motion is the solution of Equation (5.29)

T, 28 .
52—+Q:— T+ T, =z
r

where
-2
2 - Pc A

T 6Ty

6 3_&6.
T 2}

r

20, . (3#v0)3v

Q; c A

and
2 = free field displacement

structure mass per unit ares

=
[

v = structure volume
A = structure surface ares
P

= soil unit mass

(e 2]
L}

average compression wave velocity.

(5.29)

p
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If t, is the transit time of the ground shock wave over the structure and

t

t. = %ZT (5.30)

T
the response Tr will be practically identical with z after a time period t*

where

* =

t tr + tt (5.31)
If necessary Tr can be determined within the interval

O0<t < t¥

by solution of Equation (5.29)

The deformational motion can be approximated by Equation (5.32)

T . A N
S PR NC LANE A S (5.32)
SF d d
cA
r
where
2
Q% -« w® 41597 (5.33)
(nd = circular frequency of structure vibration in vacuum
; = static deformation of structure in soil under the

imposed pressure.

Fop computing 2 the actual soil p ssure at the structure depth should be

averaged out within an interval equal to the transit time tt'
The net interior structure motion, T, is then
T=T +T, (5:34)

One of many methods for solving Equations (5.29) and (5.32) is given in

Appendix B.




In this section the pressures and velocities used have been the net values

acting in the direction of soil particle motion. These are the appropriste

inputs for "floating" structures completely surrounded by soil.

1f a structure founded on bedrock is used, e.g., some sllos already built,
only the horizontal component of motion need be considered. The equations of
this section are valid for the horizontal component if horizontal pressures and

velocities are used as inputs and if substantial vertical motion is prevented

by the bedrock.
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SECTION 6

NONLINEAR SYSTEMS

Nonlinearities of shock isolation system must be considered from two

standpoints.

1. All real systems contain nonlinear elements even though for
practicel design purposes we may simplify the analysis by
"linearizing" the systems. In most instances the errors so
introduced are of no practical importance and, therefore,
the procedure is perfectly acceptable. However, occasionally,
the nonlinearitiec introduce qualitative changes in the S e
behavior of the real system which are of sufficient importance

that they must be considered in tle design.

2. Por various reasons it may be desirable to deliberately design

nonlinear isolation systems in order to gain specific advantages.

The theory of nonlinear vibrations is extremely complex and still in its
infancy. Further, by far the largest portion of the work already carried out
understandably has been directed towards solution of steady-state problems since
these comprise the largest proportion of nonlinear problems of practical importance.
Because the principle of superposition cannot be used for the solution of nonlinear
mechanical problems the variety of existing steady-state solutions are of very
limited value to designers interested in the transient response of nonlinear

systems. No analog of the Duhamel integral exists for nonlinear vibration

problems.




At the present state of our knowledge no general, well developed theory
of transient nonlinear vibration exists. The mass of theory and data available
is directed toward solution of certain specific problems or of problems that
can be characterized by certain specific nonlinear differential equations.
Further, even at best, application to particular problems of the methods that
have been developed is generally quite tedious and time-consuming and, if
carried out analytically, almost invariably requires the use of a high speed

computer.,

It was believed that no purpose would be served by burdening this report
Wwith a compendium of sclutions and techniques for analyzing specific nonlinear
problems. Determination of the effects of nonlinearities on nearly linear
systems 1s appropriate to the refined final design of shock isolation systems
which is not within the scope of this report. However, preliminary design of
nonlinear systems that might be used in lieu of the more conventional linear
types is within the scope of this report. Therefore, on the project some effort
was expended to develop criteria that would point out the advantages or dis-
advantages of nonlinear systems under particular circumstances and to develop
methods to expeditiously determine rattle space requirements, acceleration limits,
etec. for nonlinear systems. An attempt was made to do this for the general non-
linear system as opposed to cataloging specific types of nonlinearities.
Obviously, the results presented are far from complete even for cases to which
they most strictly apply. Again we emphasize that the purpose of this section
is to afford the designer fairly rspid methods that he can use to expeditiously

establish limits for the important parameters of rattle space requirements and
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Peak accelerations to which the isolated body will be subjected. Evzn more

important, perhaps, is presentation of means by which he can determine whether
a nonlinear system has any clear cut advantages or disadvanteges over a more

conventional linear system.

Nonlinear systems can be characterized in & number of ways. In this
section we will find it convenient to regard the isolator as an energy storing

device. Two general classes are considered:

1. Conservative systems In which all the energy delivered to the
isolator by mechanical motion and stored within the isolator as
potential energy ultimately is released by the isolator as

 mechanical motion. A conservative system is the nonlinear

analogue of undamped linear isolators.

2. Nonconservative systems within which = portion of the energy
delivered to the isolator by mechanical motion is dissipated
as heat or otherwise and is not subsequently released as mechanical

motion, the analogue of damped linear isolators.

6.1 Conservative Nonlinear Systems

Consider a single degree of freedom vonlinear isolator. 7Tt can be symbolized
by the scheme shown in Figure 6,1. The problem is to determine the displacement
x(t) and the force F(t) in terms of the known input z(t) and the isolator

characteristics. A variable y(t), corresponding to the rattle space, is defined
y(t) = x(t) - z(t) (6.1)

Note that y(t) is defined positive for a decrease in the space between the mass

aud e lsolastor support.

1D
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Figure 6.1 SCHEMATIC OF CONSERVATIVE NONT.INEAR SYSTEM
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Now, regardliess of the mechanical complexity of the isolator, if 1t is
conservative, its mechanicsl characteristics can be repregented by a curve
similar to Figure 6.2 if the mass of the isolator is taken to be zero. If the
masses of the isolator elements are considered the curve of Figure 6.2 broadens
somewhat, the amount of broadening being proportionel to the ratio of the kinetic
energy of the masses to the potential energy stored. This condition is roughly
analogous to a spring-mass system having a spring so heavy its mass must be
included in the analysis. Even for the linear system this greatly complicates
analysis. Therefore, in this section the mass of the isolator will be presumed

smali enough to neglect.

~ For the massless isolator the force developed is equal to the derivative

of potential energy, i.e.,

P p (6.2)

Assume now that the isolator has been placed on its support. Its compression
y and potential energy Ep are zero. Then as the supported mass is gradually
lowered on the isolator it compresses an amount y, stores potential energy Ep,

and develops a force F.
At equilibrium the force F must be equal to the weight mg.

Figure 6.4 illustrates two differing energy-displacement curves and their
resulting equilibrium positions. A practical value of nonlinear systems is
immediately evident. The equilibrium energy of system 2 is much smsller than
that of system 1 for the mass chosen. Now as a first approximation the cost of

an isolation system is roughly proportional to the equilibrium energy. Therefore
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1f system 2 were of the same order of mechanical complexity as system 1, it

would be considersbly cheeper than system 1.

We also note that if the two systems were designed so that

2’y
g; = _.22 (6.3)
dy

were nearly equel and constant within the stroke range R centered on the
equilibrium position the systems would be nearly linear within R and of the
same frequency. A bi-linear system such as system 2 could be designed for a
protective structure by making R equal to twice the relative displacement

taken from a shock spectrum at frequency

i\ /rz | |
t==\=n dy'lyé (6.4)

A close approximation of the rattle .pace requirements can be quickly made

using the EP versus y and F versus y graphs.

The time required for the vertical component of structure motion to reach
its maximum is about equal to the time required for the ground pressure wave to
travel from the structure to bedrock and reflect back to the structure. Now,
generally, the structure will be within 100 feet of bedrock and the ground
pressure wave propasgates at 500 to 1000 ft/sec. minimum. Thus the time to
maximum downward displacement of the structure is on the order of 250 msec. or

less. The magnitude of the structure displacement is given with fair accuracy

by
z % (6.5)
max pc
2D
H = e -
t* = = (6.6)

13k




AP R TR AN e - - an s -

where

I(t*) - impulse of blast wave (ground wave)tetween
time zero and time t#*
= Depth of bedrock below structure
T = Soil compression wave propagation velocity

= soll mass density

As soon as the floor of the structure begins to descend the isolator begins
to expand and deliver some of its stored energy to the floor and soil below.
In expanding the force, F, exerted against the mass decreases somewhat so the

mass begins to descend, thereby gaining kinetic energy due to its velocity and

~ losing potential energy as measured in a motionless coordinate system. However,

the potential energy of the mass with respect to the floor increases because

the floor descends faster than the mass and therefore the mass rises with

respect to the floor.

Since isolator systems generally are of long period (a second or 30) and
maximum vertical displacement of the floor occurs generally in less than 1/&
second, as & first approximation we can assume that the mass remains motionless
during floor descent to maximum. Then, if necessary we can correct for initial

mass motion.

If the mass remains motionless during floor descent a distance Az the

isolator opens an amount - Ay and the potential energy of the mass; with respect

to the floor, increases an amount mgAy.
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Figure €.5 shows normalized EP versus y and F versus y curves for a hypotheti-
cal system. The curves have been normalized by dividing both Ep and F by the
weight of the isclated mass. The rest position is indicated by point A on both
curves. Now, if the floor instantaneocusly dropped a distance Az the isolator
would expand a distance - Ay and the energy stored in the isolator would decrease
from poiunt A to point B on the E/mg curve. However since the potential energy
of the mass with respect to cae floor increased an amount mgAy the total eﬁerg&
in the mass-isolator system, measured with respect to the floor would be equivalent

to that at point C.

Now, since we have postulated a cunservative system, the total energy of

the system would remain constent if the floor suffered no further motion. However,

point C is not a position of equilibrium because the force represented by point M
is less than the weight of the isolated mass. The mass therefore begins to
descend losing potential energy and gaining kinetic energy. Also the compression
of the isolator increases so the isolator gains energy. During the motion the
potential energy of the mass would be represented by line CH, the potential plus
kinetic energy of the mass by curve CJH and the potential energy of the isolator

by the curve BAD.

At the point of maximum displacement the mass would be motionless and the
kinetic energy zero. Therefore the loss in potential energy of the mass would
be Jjust equal to the potential energy of the isolator. Thus point D, at maximum
displacement can be established by projecting line CD at hS’, point D being the

intersection of the line with the isoclator energy curve.
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1f point M and point D are connected wich a straight line the ordinate

between line BD end curve BAD is the kinetic energy of the mass at the corres-

ponding displacement, y.

The period of vibration of the system, T, can be obtained by integrating

the reciprocal of velocity.

Thus

T 'Efn —%i—ﬂé (6.7)

For a real system the floor does not descend instantanecusly; a time we
heve denoted t* is required. During time t* the mass descends slightly and

gains kinetic energy Ek*'

If we approximate the descent of the floor as & linear function of time
during the time t* and, further approximate the arc MA on the force versus y

curve by a straight line the loss of potential energy, AEm, is given by

_1 2
AEm =7 AF t%g (6.8)
AR
m . 1 AF 2
T (ag)(t* g) (6.9)
and the gain in kinetic ener~y by
2, .2
_ 1 QF)Tex
A =g 8TLE (6.10)
AB, 1 Aw2 .2
=3 (a_g_) (£*“g) (6.11)

-




- method for correction for t#*,

We note that both of these corrections will be quite small for real condj-

tions similar to those illustrated in Figure 6.5.

Figure 6.6 reproduces the energy curve of Figure 6.5 and illustrates a

Subsequent to time t¥ the floor of the structure will rise. However, since
the rise is due to the decsy of the ground pressure wave the rate of rise is
slow, a second to several seconds depending on bomb size. This rise will modify
somewhat the response of the system but the sluw rise alternately adds and

subtra..s energy from the oscillating system so the net change over a period of

time is small. In any event, for a forcing function of small duration with
respect to the system period, neglect of the rise is on the conservative side,

i.e., ymax is greater for no rise,

An glternate method ¢. plotting the energy curves may be preferable for
actual design purposes. In Figure 6.7 curve (A) is the normelized isolator
strain energy curve, analogous tc curve BAD of Figure 6.5. The static equilibrium
position of the masg is at the point where the slope of curve (A) is unity. Curve
(B) is the normalized mass potential energy curve and curve (C) is the total

potentisl energy curve, the sum of curves (A) and (B).

Since the system is .onservative the sum of potential and kinetic energies
must remain constant, and can be represented by the horizontal line (D). The
difference between (C) and (D) is the kinetic energy of the mass. Points (1)
and (2) for which the kinetic energy is zero are points of extreme relative

displacement between mass and foundation,
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The rise time correction can be made by computing —Eg and —EE from

Equations 6.9 and 6.11. Then the normalized increment of total energy is

g mg mg
This can be plotted as shown on Figure 6.7. Then the range of mass motion

with respect to the floor 1s between the limits of points 1' and 2' on the graph,

Should it be necessary to determine the response of a nonlinear system
to a forecing function having a duration of a quarter period of more one has
little recourse ot! 'r than to carry out a step-by-step numerical solution. For

a complex sys*..m this is best done with the aid of a digital computor.

6.2 Nonconservative Nonlinear Systems

If the general conservative nonlinear system shown schematically in Figure
6.1 is modified to include energy dissipative elements it can, with perfect
generality, be represented by Figure 6.3. In Figure 6.8, I, represents an
energy storage device having the properties of a comservative isolator. Block
Id represents an energy dissipative device. No energy communicated to Id is
returned to the systey. ™v o +he <nen- ?a always renists the motion y regardless

of whether y and its derivatives are positive or negative.

It may not be aprparent that any nonconservative single degree of freedom
system, regardless of its complexity, can be represented by a scheme as simple
as Figure 6.8. Energy is a scalar variable. In classical mechanics all energy
components of a system are linearly related. Therefore all conservative energy
components can be lumped, if we so choose, and all dissipative components can

also be lumped,
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It is pointed out, however, that the forces Fc and Fd probably would not

exist separately in individual physicel members,

We denote the energy stored in isolstor IC Ly Epc' The curve of Epc versus
y can be deduced from the physical characteristics of any real system. It
simply is the energy within the isolator et position y with all time derivatives

of y zero. The Fc versus y curve is then simply dEPc/dy.

No energy curve analogous to Figure 6.2 exists for the dissipative element;
energy dissipated depends on the history of y and its derivatives as well as
their instantaneous values. However, the Fd curve does exist but 1s much more
complicated than Figure 6.3. Fd’ in many real system is a function of at least
y and y. It may depend also on ¥ , the absolute acceleration of the ieolator.
For instance, the friction against an unlubricated shaft turning in a reamed
hole would depend to a degree upon the acceleration force exerted by the shaft
against the hole. Each element of a complex system would have a separate time
dependent position coordinate so that if we attempted to lump them into some
generalized coordinate, w, as shown on Figure 6.8, w would be a function of x, z,

and all of thelr derivatives.

If the mass of the isolastor can be considered small enough to neglect in
comparison with the supported mass, m, then the force Fd is a function of y and
y only. The dissipacive force can be quite accurately approximated by a function

of y only for many real systems,

Because the energy dissipated during any particular time interval is a

function of the previous history of motion the tezhnique of Section 6.1 cannot

LAk




be extended to cover the dissipative case. This is hecause the simplicity of

the technique is due ultimately to the fact that only the terminal points of
motion are wed. If the techmique is extended to account for the effects of

intermediate velocities and displacements it loses its simplicity.

If it were necessary to consider demping for an impulse excited nonlinear
system the simplest approaech would be to use the phase plane method which is
well presented in the literature*. Actually, for a system of a fair degree of
complexity probably the best procedure would be to program the problem for =

digital computor.

Unless the nonlinear system is quite heavily damped aqceptay;gwdesiggrr -
estimates of rattle space and acceleration can be obtained by neglect of the
damping altogether and the method of Section 6.1 used. These conditions
generally will be true for the low frequency systems used in shock isolation of

sensitive e ements of hard systems.

Since ground shock 1solators are invariasbly subjected to un initial high
velocity % shortly after onset of the ground shock wave (within seversl milli-
seconds ) velocity sensitive dampers should not be used; they would communicate
& high pulse of acceleration to the 1solated equipment. Coulomb dampers, however,
are insensitive to velocity and further have the desirable property that the

force applied to the isolated equipment can be made nearly coustant,

A Coulomb damped nonlinear system proportioned so that the ratio of energy

d*'ssipatea to circulating energy for the first, or largest ampiitude cycle of

*See, for instanre, "Introduction to Nonliucar mechanics", M. Minorsky,
J. W. Edw.rds, Ann Arbor.
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vibration, is 10 percent, will apply a force to the isolated element at least
10 percent of the peak comservative element force Fc but less than 20 percent
of the peak force F_. Even for a linear conservative element [ (spring) the

pesk force ratio generally is less than 15 percent.

Such a system would ring through no more than ten periods following the

decay of the ground shock wave,

6.3 General Consideration of Nonlinear Isolation Systems:
Their Advantages and Disadvantages

An important advantage of some nonlinear systems was pointed out in
Section 6.1; for a given supported weight the equilibrium energy of a "bi-linear"
type system can be much smaller than an equivalent linear system having approxi-
mately the same frequency of perturbations asbout the equilibrium point. Stated
another way, a truly bi-linear system needs far less energy capacity at a given

frequency and excursion range than does a linear system of the same frequency.

A second advantage of Coulomb damped systems discussed in Section 6.2 is
that reasonable damping of the ringing of the system following ground shock
excitation can be obtained without the consequent high accelerations that would
be communicated to the isolated equipment by velocity sensitive dampers, Further,
Coulomb (constant dry friction) dempers (e.g., brske drums) are probably simpler

and more reliable than any other.

The characteristics of nuclear blast induced ground motion are such that
below a certain vibration frequency the excursion of the isolated mass (rattle

space) remains constant. (This is represented by the left, displacement, ‘ranch
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of the shock spectrum.) However, as the frequency of the system is reduced, the

scceleration of the isolated mass 1le reduced and, per'.aps of more importance,
the kinetic energy delivered to the mass i3 reduced proportionately. Therefore
its tendency to osclllate after the ground shock wave has passed is reduced.

In Section 6.4 some practical systems that can be built to support sizeable
masses at frequencies two or even three orders of magnitude lower than the 1 ¢s3

range of most present hard isolati~n systems are briefly discussed.

The disadvantages of nonlinear systems, with one notable exception, are

three.

1. The mechanical complexity of nonlinear systems generally is considerably

greater then thet of linear systems.

n. The mathematical problems in designs of nonlinear systems are quite
formidable as soon as the single degree of freedom elements are departed from.
Even for the elementary singie degree of freedom systems the computations may

require & digital computor for any other than impulse loading.

3. The coupling between elements of a complex nonlinear system can be
very strong, introducing detrimental motions to the isolated element as well as

grossly complicating the analysis.

The exception mentioned is the Coulomb damped mass-spring system. Its
mechanical complexity is generally less than that of any other damped system
and its reponse to sn arbitrary input can be determined by simple graphical

or numerical techniques (Reference 8).
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6.4 Negative Spring Isolators

If the slope of the enmergy curve of Figure 6.2 became negative then the

§
t
g
j
i
3

force of Figure 6.3 would become negative and within the negative region the

isolator would have & variable negative spring constant.

- " A toggle provides a simple physical example of such a device. Figure 6,9 N
¢ schematically shows the force-displacement curve for a toggle. It has a sub-

stantial negative spring region centered on the snap through position., Further,

by proper design & nearly linear region of about 1/3 h (see Figure 6.9) can be ”*%'

!

| obtained. é

4 B  Negative spring devices are not limited to toggles. Any energy storsge |

device having a negative energy versus disrlacement curve following an initially
positive curve has a negative spring charscteristic. Mechanical devices can

consist of cems sliding ageinst loading rollers, (Figure 6.10) the rollers being
loaded by any appropriate means. Note also that by prelosding the cem followers

the lower portion of the cem can be truncated.

é A negatlive spring connected in parallel with a positive spriv: having
nearly the same spring constant (elightly higher for stability) yields a spring
system of subst.antial energy capacity but practically zero spring constant at

the operating range (Figure 6.11).

Reference 5 describes a negailive spring system actually installed that

-6
j isolsted a ten ton suspended mass to 10 g.
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The principal adverse criticism of a negative spring system is that it

is bulky. However it 1is belleved that with sufficient design effort the bulk
could be greatly reduced. If this conjecture proves to be true they would
then provide particularly desirable elements for hard installation shock
isolation. The only input parameters required are stroke and suspended weight.
(Even for the toggle system the suspended weight can be varied within 1linits
for any particular isclator and still maintain the frequency at near zero).

In operaticu the 1solated mass moves only minutely; therefore no significant
kinetic energy is gained by the mass and there is no coupling between isolation

elements nor ringing subseqpent to ground shock excitation. The isolated ma..

reneins at 1 g vertical throughout +he attack
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SECTION 7

IS01 ATOR ELIMINATION

The possibility that isolators can be eliminated from the system when

ruggedized equipment is used should be checked.

Any criterion for isolator elimination must be approximate; variations in
equipment characteristics are too great to allow development of an accurate
generél method. It 1s believed that the method presented here for development

of a criterion for any particular installation, though quite conservative still

Before proceeding with development of the criterion an aspect of the shock
isolation problem that has not been touched in other parts of this report will

be considered,

It is a matter of experience that certaln peculiar effects take plece in
a true shock enviromment which theory is hard put to explain., For instance it
has been observed that if a large charge of explosive is detonsted under wsater
and close to a ship, though the ship structure and machinery may suffer no observsble
damage, certain brittle elements are destroycd. The ship may be left undamaged

but in darkness because the filaments of incandescent lamps are broken,

In an atvempt to "explain" these phenomens, Weiner (Reference 10) postulated
that such damage is caused by very sharp rises of stress, rises occurring in one
or two mlicroseconds. Though, to our knowledge, Weiner's predictions and conclu-
slons have not been tested, his hypothesis, if accepted, does account for many

shock peculiarities.
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Further, Weiner shows that ccnventional shock tests would not disclose such

equipment wesknesses because the .ise times of the tests are too long. 1In addition,
Weiner points out that many msaterials used in conetruction have concave stress-

strein curves and that sharp pulses would be generated.

His report also points out that if the sharp rise postulated is the reason
for failure of small, more delicate elements of equipment then such damage can be
prevented by a simple technique: mount the equipment on brackets so constructed
that no stress can be communicated from input to equipment by any path that does
not include a flexural element. Weiner showed ihui the postulated damaging pulses,

though propagated considerable distances as tension or compression waves, are

- ‘attenuated to the vanishing point when propagated as bending through i -distance - -

of one or two beam thicknesses.

Now the required "beams" could be simply wall brackets made of bent plates
and having elements in three mutually perpendicular planes. Most bent plate

brackets would qualify.

In the following development it 1s assumed thet sharp spikes of stress
developed inside the structure and mounting equipment are avoided by use of
simple mourts, or brackets, so constiucted that there are no direct compression
or tension paths between equipment and input; somewhere along the line all re-
actions are resisted by bending moments. It imposes no great hardship on the
designer to specify that the natural frequency of any bending element in the

bracket be no higher than 500 cps.
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In brief, the critericn for elimination of isolators is expressed as an

equivalent drop to a hard surface.

in electronics laeboratories, even seunsitive test equirment can withstand a drop

of a few inches to a hard floor. On a simple bracket or flexible mount much

equipment can stand a drop of two or more feet.

The question is "How high a drop corresponds to the interior motion of a

hard shelter?"

This question can be answered with falr accuracy by the five following eteps:

1.

Estimate the {ree field motion as accurately as possible in
accordance with the methods of Section k.

Estimate the resulting iuterior structure mntion ir accordance
with the methods of Bection 5.3. Carry out at least a rough
solution of Equations (5.29) and (5.32) to obtain the early
history of interior motion.

Using the Newmark-Hansen Report (Volume ITI of this report) sketch
the peak relative response spectrum for a combination of simple
pulses that approximate the early history of interior structure
motion obtained in Step 2.

Determine the peak pseudo velocity from the spectrum. Denote it

A

v *
max
Compute the equivalent drop, xeq’ from
~
o1 Toex®
eq 2 g

where g is the gravity constant.

As 1s repeatedly inadvertently demonstrated
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No exact rules for the maximum drop that cen be withstood by various items
of equipment can be given. A typical value of meximumn interior velocity is 4 £t
per second having an equivalent drop height of only 3 inches. Most of the

equipment 1 a hard structure could resist e drop of 3 inches without damage.

It may be desirable to have available & rough, conservative estimate of the
equivalent drop. This can be obtained for vertical motion from Figures 7.l
through T7.3. The eqiivalent drop for the horizontal component can be taken as
the product of the vertical drop and the tangent of the Mach angle of the .

compression wave,

.
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SECTION 8

*
DETERMINATION OF INPUT PARAMETERS
Even though some of the input parameters entering into the ground shock
isolation problem cen only be estimated it is necessary in order to carry out a
design to have firm procedures for making the estimates. In this section formulas -
% ' , and data useful in making these estimates are compiled. An attempt has been
i': made to simplify some of the formulas at the expense of theoretical accuracy.
0
The accuracy remaining however is more than is generally significant in view
of the inherent errors in input data.
X ' 8.1 Simplified Structure Frequency Formulas
Notation
£ = frequency of vibration kycles/sec]
£ = frequency of vibration of nth mode kycles/sec]
n = modal index [dimensionless]
S c = sonic velocity of shell material [ft per se: ]
h = shell thickness fet]
S R = shell radius ft]
A = distance between circumferential nodal lines [ft]
6 = half central angle of arch fadians]
: All frequencies of vibration are computed for structures vibrating in vacuum.
E 8.1.1 Domes
For all modes c (8.1)

f=mR
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8.1.2 Circular Cylinders

For all extensional (breathing) modes
c
f R (8.1)

For deformational (bending) modes having no circumferential nodal lines and

free ends

2
1 n(n°-1) h c
£ = — E) | == (8.2)
n [2‘\6 [n2+l_|lf2 RJ 2R
These modes have 2n longitudinal nodal lines.

For deformational modes having circumferential nodal lines spaced a distance

nzn ,EB 2
T =t 91+ —(J%—l) [(2n2-l)(n2-l) + n2 (’-EZE)2 + 6 (%)2} {8.3)
nn -

£, is computed by Formula (8.2).

8.1.3 Circular Arches

For deformational modes having no circumferential nodal lines and free ends

2
£, - [ 25 (; 221\172 (ﬁ)] ‘én'c'ﬁ (8.4)
n /7

' =513 (8.5)
These modes have n nodal lines between the spring lines.

For deformational modes having circumferential nodal lines spaced a

distance £
m™R ]2 1/2
D ,
£ . =f 1 + ____:%;._ [(H‘ng_l)(Fn -1) + 1}2’?§)9+ 6(%)%] (8.6)
Ny n I'\n@ln —l) *

fn and r, are computed by formulas (8.4) and (8.5) respectively.
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8.1.4 Rectangular Slabs

For bending modes having nodal lines spaced at "a" in one direction and

spaced at "b" in the perpendicular direction

<ﬂ1[l§ + 15}
a b

f =

3

%
n

il ch

IRVE] A

where 4 is the rectangle diagonal and A is its area.

or f =

|

N

8.2 Normal Mode Geometry

(8.7)

(8.8)

Unless for some reason & detailed analysis of an interaction problem is

to be carried out the normal mode geometry will not be required.

analysis is to be carried out the mod:es can be obtained for most structures from

the literature.

If such an

If the method of Section 5.4 is used modal geometry is not required; the

statically computed deflection is used instead.

8.3 Soil Parameters

8.3.1 Bedrock Elevation and Material

These data should be obtained from borings. If not available they can be

estimated from topographic maps. If these are not available estimate bedrock

to be 150 ft below surface and having a seismic velocity of 10,000 ft per second.

The




8.3.2 Stress-Strain Parameters

If at all possible a confined compression test stress-strein curve should

be obtained from soil samples.

If a design must be carried out to be applicable to a number of unspecified
sites assume an "elastic" soil weighing 100 lbs/ft3 having a compression wave
velocity of 1000 ft p.r second, and a percyclic damping factor of 0.25. (The

latter number is quite conservative; a more realistic value wouid be 0.35.)

If a minimal description of soil conditions at a site is unavailable, elastic

theory and the following approximate values can be used.

goil Type Approximate Density Approximate
Compression Wave
Velocity
Top soil light 100 1bs/ft3 650 ft/sec
dry or ..ist
Joamy silt
Clayey top soil, semi~ 100 1bs/ft3 1200 ft/sec

consolidated sandy clay,
nubble or gravel,
loose rock taius, wet loam

Cemented sand, 100-110 1bs/ft> 2000 ft/sec
sand and clay

Saturated consolidated clay 120 lbs/ft3 3000 ft/sec

8.3.3 Percyclic Damping Factors for Real Soils

The following veslues have been extracted from the geophysical literature.
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Material Percyclic Damping Factor

Fine sand and silt 0.21
Course sand 0.35 (0.25-0.50)
Clay 0.25
Shale 0.043
Limestone 0.047
Sandstone 0.060

Granite 0.030
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APPENDIX A

DEVELOPMENT OF MOTION-TIME METHOD FOR DISTRIBUTED SYSTEMS

A.l Statement of the Problem; Method of Approach

Assume & position in the free-field and the time history of free-field
pressure at tHe selected position. The time history is presumed to include all
effects that influence the pressure waves arriving at the selected position,
such as, the incident compression wave, the incident shear wave, the directly
transmitted wave, and any reflected or defractved components of any of the
foregoing waves. In this section a method will be develcped for determination
position in the free-field. The word "method" in the previous sentence is
underlined to emphasize that a general procedure itc developed, not a reries of
formulas to be applied in specific instances. The method presented admits of
gross approximation or of application to problams deserving of a high degree of
accuracy for which an electronic digital computer would be necessary to carry
out the computations. Thus, if only the free-field compression wave can be
estimated with any degree of accuracy a solution can be obtained within this
degree »f accuracy. On the other hand, if site conditions are sufficiently
well known so that all of the pressure components stated above are known within
tolerable accuracy then this informetion can be reflected in the computed interior

structure motion, if desired.
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A difficulty with all engineering methods, and a difficulty that becomes

more pronounced with ir ‘-easing generality of the methods, is that they must be
understood for theilr successful application. It is not enough merely to determine
which numbers should be substituted into a serles of formulas in order to compute
a resulting number desired. For this reason in the followling subsection the
mathematical expressions used will oe developed in considerable detail and the
emphasis will be placed upon the physical meaning of the mathematical expressions
used. This is considered to be very important because in actual application most
of the precise mathematical expressions will be approximated by thelr physical
counterparts. The ease and facility, therefore, with which a given degree of
aecuracy can be achieved in the results will hinge, to a great extent, on the
thorough understanding of the processes used by the designing engineer and good

intuitive estimates of the accuracy of approximations used.

The genersal methods of mathematical applied mechanics are so well understood
that their application has become slmost standardized in technigue amounting, in
a sense, to something of a cult. Without meaning to disparage the considerable
mass of .:cellent solutions *hat have been obtained by this approach it is pointed
out that sometimes the formal mathematics tends to obscure the physics of the
problem being investigated. The development of the next subsection, in particular,
does not approach the problem in the classical manner. Considerable physical

insight is gained by this departure from custom.

A.2 The Differential Equation

Consider a linear, elastic, statically loaded shell structure*. Its

* Since shells are the structures of interest this development is carried out in
terms of shell characteristics. Appropriate modifications render it applicable
to any linear, elastic structure.

e




equation can be represented

DL (u) =p (A.1)
vhere
D is a scalar constant
u is the absolute vector displacement of a point on the shell
’ ) 5' is the vector pressure at & point on the shell

L{u) is a linear vector operation, a function of u and its

spacial coordinates. Equation (A.l1) can be taken as the
definition of L(u).

It should be appreciated that the pressure vector p of equation (A.1)
includes the forces that we normally term reactivi . in other words, if the
pressure p was summed over the entire structure the resultant would be zero,
and the moments of the pressure p summed over the entire structure must be zero.
The following elementary examples are included to fix the meaning of the linear

vector operator and the circumstances under which the vectorial nature of u and

S become significant.
For a flat plate laterally loaded the analog of Equation (A.l) is
DVE V() =T

where

%

Laplacian operator

! EnS
= e ———
. 12 (1 - F)




E = modulus of elasticity
h = plate thickness

v = Poisson's ratio

It should be observed, however, that since the displacement and pressure
vectors are in the same direction over the entire surface of the plate, the
vector character of displacement and pressure do not contribute anything
significant to this particular problem and therefore they might as well be
written as scalars (as they usually appear in the literature). If the flat
plate were of nonuniform thickness then the equation would be

L £ &AW -3
i V() = p

For an inextensible circular arch of central angle 20 and radius R the

analogue of Equation (A.l) is

3\
d2 d‘? 2
5zt 1)
EIL ) a6~ a6 =3
R a2
—_— - 1)
ae-

where
ET is the stiffness of the arch

E is the vector pressure per unit length of rib.
Now,for the arch
u=u, n + ug A
where 7 and f are unit vectors in the radial and tangential directions

respectively.




Also, for the inextensible theory
= 4
U T30 %

Since each component of the vector displacement must satisfy the differential

equation
-ﬁ-}; L (4) = B
%L(;'i)wr
vwhere

p=p.n+g 4
we see that, although the vector L(ﬁ) must be colinear with the vector'S, in
general the vector u is not colinear with P. Physically the situation will

arise for any structure that, under the influence of & concentrated load, moves

laterally with respect to the load.

Equation (A.1) is not sufficient in itself to determine an actual deflection
even though the loads are given. It only expresses the relation between the
deflection at one point to that at ancther. In order *c get absolute values for
the displacements we must prescribe a set of boundary conditions to the problem,
i.e., a set of points where the displacements, moments, shears, or slopes are
zero. The complete set of equations for a particular problem then consists of

Equation (A.l) plus the appropriate boundary conditicns.

It is well to emphasize at this point that for any particular problem an

equation analogous to (A.1) always exists but 1t way ve Loc complex methematiclliy
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to use or even to write. An example of an essentially simple physical system
that does not have & tractable equation analogous to (A.l) is a steel building
frame; however, the general conclueiens that can be drawn by operating with

Equation (A.l) are applicable to the steel building frame.

The equations of free vibration of the above system in vacuum are then

(damping neglected)

DL (u)+ M = 0 (A.2)
B, (W) =0 (n=1, 2,...) (A.3)
where
m is the unit mass of the shell, a function of the spacial coordinates

Bn( ) are the boundary conditions

a is an index denoting the individual boundary conditions.

Equations (A.2) and (A.3) can always be solved in the form

e

=00

u = Ai ¢, sin @Dit - 91) (A.4)

i ™

1
vwhere
Ai are arbitrary constants

and Gi are arbitrary phase angles

5; are a set of orthogonal vector functions of the spacial variables only,

satisfying the boundary conditions and the orthogonality relation

0 ... if i # (a.5)

Ca

[ ¢, ¢,mada
A ot
= N, ... if §=




The area integral is taken over the entire surface of the shell.

The Nj are constants, termed the norms, of the orthogonal system. Then

the circular frequencies, w,, satisfy the relations

i’
DL () =ma’, 3, (.6)
i i1
The physical meaning of Equations (A.4) th ~ugh (A.6) is that any steady
state vibration u cen be represented as the sum of an infinite number of rather
special displacement configurations, 61, vibrating sinusoidally at specific

frequencies W each frequency being related to the associated displacement

i)
configuration by Equation (A.6). Particular di.placement configurations, IL

are obtained by adjusting the values of the arbitrary constants Ai and 91.

Physically it is by no means obvious that this situation should be true.

If we regard(u2 in Equation (A.6) as simply an arbitrary number then certainly

i
the equation could be solved for some function Ei. We might meke a guess as to

the general shape of él,substitute it into the linear operator, divide by m “?i

and obtain a better approximation foz'&;i. If this procedure were carried out an
infinite number of times we would expect to find some particular displacement
configuration satisfying Equation (A.6) for the particular value ofa)i used.

in this manner 5} could be generated for any arbitrary value of(bi; however, it
would be found that only those functions 5; corresponding to certain particular
values ofcui would also satisfy the boundary conditions. We would still have

an infinite number of $} left satisfying the houndary conditions but this infinity

would be smaller than the number that did not. A fairly long mathematical.

developinent then shows that any two functions 5} and'61 satisfying both Equation

A-T7




(A.6) and the boundary conditions also satisfy Equation (A.5)*.

Evidently since the geometry of the a& are influenced by the boundary
conditions this influence is reflected in the assoclated frequencies of vibration
Wy » Thus if two structures identical, except as to boundaery conditions, were to
be placed In steady state vibration the vibrations of the two structures might
be markedly different. The most famiiiar example of this situation is the
difference in vibrations between a hinged end and s fixed end beam that are

otherwise identical.

Since the element of mass, m dA, is always positive it can be concluded

from Equation (A.5) that in general 31 and aﬁ will have positive and negative

portions, otherwise their produet would not average out to zero over the surface

of the structure. In most treatises on orthogonal functions the functions are
considered to be scalars rather than vectors and to be functions of one independent
variable only rather than two required for a general description of a shell
structure, the two dimensionsl functions for the shell being represented as the
product of two one dimensional functions each of one of the coordinstes of the
shell surface. Such one dimensional functions and two dimensional functions
comprising a product of two one dimensional frmctions have a series of nodal
points or nodal lines, i.e., points or lires at which the wvalue of the function
is zero, Tor the two dimensional case the nodal lines divide the function into
alternate positive and negative zones somewhat similar to a checkerboard. As

the index number, i, increases, the number of nodal lines on such modes increases

also,

*¥ See, for instance, Air Force Specisal Weapons Center Technical Report TR-59-~2
"Protective Construction", T.G. Morrison, Part IIT (U).
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The vector functions 5; in general do not exhibit this characteristic.
The scalar value of the vector displacement is always positive or possibly zero
and, in general, if the vector is resolved into its comnonents, at a point where
one component is zero the other components will not be zero; therefore, the
vector modes do not have clearly defined nodal lines. The components cf the
modes, however, do have nodal lines but the nodal lines of, say, the radial
component and the lateral component of the vector modes of a circular cylinder
occur at different positions. This observation is quite important when setting

up the technique for numerical evaluation in a later seciion.

If the structure is subjected to a dynamic load p then the equations of

motion become

o

"Dr(@+mu =

B, (W) = o. (A.7)
Equations (A.7) have a solution in the form
[« <]
u= 3 T.(t)F (A.8)
j=p 1001

where Ti(t) are the solutions of equations of the form

r'1;,. +w,2 T, = Ti(t) (A.9)

7. (t) = ﬁ'l';{. 7.3 aaA. (A.10)
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In subsequent sections considerable space will be devoted to methods for

computing the value of Ti(t). It is vworthwhile, therefore, to get some feeling
for the physical significance of this expression. Since the dimensions of p

are pourds per square inch, the dimensions of 51 are inches, and those of dA are
square inches, the integral in Equation (A.10) simply represents the total energy
that would be delivered to the Ei mode by the pressure P if the pressure vere
held c.nstant and the mode allowed to move from a position of zero displacement
to its maximum. Thus, the product NiTi(t) represents a time varying function at

any instant ejual in value to the energy that could, at that instant, be delivered

to the mode by the pressure function p.

We will now set up the equation of motion of the same structure immersed in

an elastic medium that offers resistance to motion of the imbedded structure.
We will denote the absolute motion of a particle on the surface of the structure
by u, the absolute motion of a free-field particle by z, and the relative motion
of the structure with respect to the free-field by W. Thus,

u=7z+w.
The medium, in general, offers three components of resistance to motion of the

structure. These will be discussed in some detail.

The first component we will Lerm the displacement. sensitive component.

Consider a cylindrical shell immersed in an elastic medium. Now, if the shell

iz uniformly expanded outward against the elastic medium & pressure will be
developed by the medium against the shell at the interface, this pressure being
proportional to the amount of cutward expansion. In a truly elastic medium if

the shell were bonded to the medium & tension would be developed at the interface

A-10
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if the shell were uniformly compressed inward. The proportionality constant

for both the compression and tension cases would be the same. Now suppose that
the shell was nonuniformly expended outwards against the elastic medium. Then
the interface pressure developed would vary from point-to-point and woula be a
function not only of the elastic constants of the surrounding material but also

of the geometry of the deformation. In general, we could write

k F(W) w = py , (#.11)
where
5& =  interface pressure due to relative displacement of
structure with respect to free-field
F(w) = a dimensionless function of W |

k = a proportionality constant.

%
For the case of uniform expansion or contraction, previously discussed, the

dimensionless function F(w) would be identically unity.

The relative motion of the structure with respect to the free-field, W,
can, in general, be resolved into three components, one of these normal to the
surface of the structure and two more mutually orthogonal with each other and

the normal component but tangential to the surface of the structure. The latter

two components could be combined into a single tangential component, the direction

of which, in general, would vary from point-to-point around the surface of the

structure. We will denote the normal component W + n and the tangential component,

W - J where n is the unit vector normal to the she’ and £ is the unit vector
tangent to the shell and lying in the pla. defined by n and w. Now in a truly

elastic medium two components of pressure &re developed at the interface due to

A-11
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the time derivative of these components of motion. The normel component of

pressure which we will denote S;n is given by

Pyp = G M W.n (A.12)

and the tangentisl component is given by

P, = CoP Iv.1 (4.13)
where
cl 1s the compressional wave velocity
s ;s thershea? wgve velocity

P is the unit mass of the medium

Equations (A.12) and (A.13) are independent of ‘e stress strain law and
~ are accurate for any material if the instantaneous wave velocities-are used:— - -
Practically, their principal value is for materials having constant wave
velocities (elastic, viscoelastic, ete.). It is pointed out that these equations
are written only for the interface pressures developed and do not represent the
time history of the waves radiated from the structure which ultimately result

from the interaction.

If the structure were nct present in the free-field but the position
occupied by the structure was engulfed by a pressure wave, the mathematical
surface defin.ng the ctrueture-medium interface would be subjected to a component
of pressure, the free-field pressure. In & solid medium, elastic or otherwise,
the free-fleld pressure can be represented by a second order tensor. We will
denote this free-field pressure tensor ;. On any surface arbitrarily described

within this second order tensor field the vector pressure on the surface, which

h-12




we will denote by p, is given by

P=n.P (A.1k)

where n is the vector unit normal to the surface,

Now if an actual structure is immersed in the free-field, the vector pressure
at the structure-medium interface is equal to the sum of the four components
enumerated above. The pressure component that we ordinarily regard as the
reflected wave or the doubling of free-field pressure against a motionless surface
is simply the sum.of components Ban and Eaz due to the relative veiocity'of'structﬁféA -
and free-field particles. For equilibrium this interfece pressure must be

_ balenced by two pressure components developed by the structure:

1. A component due to the deformation of the structure, which
we have symbolized by DL(u), and

2. The inertia of the structure, mu.

Thus the equation of motion of a structure immersed in elastlc material is
Di{u) +mu=0:.P~-~-kF(WW=-c,0 0¥ -1 - cop B . (A.15)

The minus signs appear on the right side of Equation (A.1l5) because for an
inwardly directed pressure to be developed at the interface due to structire
deformation the deformation u would have to be positive inward. Since u is the
sum of the free-field motion and relative motion w, a positive w would repre-
sent a tendency for the shell surface to ceparate from the free-field particler

yielding a tension stress or negative pressure,

Suhstituting w = U - z into Equation (A.15) and rearranging we obtain.

A-13
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DL(E)+kF(G)E+clpHE-H+ cEpZG-ImeE
. (A.16)
=0 .p+kFW z+cp nz -n+ep Tz T
With the exception of the term k F(w)z the right side of Equation (A.16) is a
function only of the free-field pressure, free-field particle motion, and

structure geometry. Therefore, with a suitable approximation for F(w) the

right side of Equation (A.16) is computable from initial data. We, therefore,

define Si

Py

H-S+kp(?z)€+clp3'z'-ﬁ+c20'22-} (A.17)

It is instructive to observe the form taken by Equation (A.16) for certain
limiting cases. Consider, first, that the soil motion and structure response =
are so slow that the process becomes quasi-static, i.e., all time derivatives
become zero. Then we see that the interface pressure would be just the sum of

free-field pressure and a component due to the distortion of the soil around

the structure, induced by the disparity between free-field motion and structure
motion.

If the struc'ure were a rigid, immovable, flat surface parallel to the
advancing wave front then DL(u) would vanish, z would be equal to u, and v
would be equal to zero. It is not apparent,but for this case the function

F(w) would be zero and also the dot product z * Z would be zero. Then since z.,

the particle velocity, is just egual to B fora plane wave, the right side

e
of Equation (A.16) would become simply 2p as it should for this condition, the

2 representing cne hundred percent reflection.

A-1Y
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Equation (A.16) is extremely difficult to solve. The term kF(w)u renders

the equation ncnlinear. Also, the two first derivative terms having different
constant factors ¢y and 5 mitigate against the use of a normal mode solution

even without the complication of the nonlinear term. At this point, then, there
would be two general courses open to us. One, we could insist on a mathematically
rigorous solution and carry out the evaluation of Equation (A.16) by means of a

large digital computer; two, we could simplify Equation (A.16) and perhaps carry

out the evaluation by simpler means. When we consider the degree of uncertainty.

that must exist for the several parameters entering into Equation (A.16) the

latter course seems to be the most reasonable to adopt. A rigorous solution of

a problem for which the input data is pror~bly accurate to no better thana =

factor of ten or twenty percent yields only illusory accuracy in the final

results. However, we must be careful in simplifying the equation that the

e K e AN K G R Y

elimination of a complicating factor does not change the qualitative behavior

of the system and that the simplifications do not introduce numerical inaccuracies

greater than can be tolerated.

It will be found that the nonlinear term has small influence on the net
response of the structure. Actually, it contributes only a small increament to
the "spring constant" of the structure, by far the larger portion being contributed
by the factor DL(U) for most cases. The sirzls exception occuss for rigid body
motion of the struvet:iré¢ in which case the lirear operator contributes zero. But
for this case the function F(a) is identically unity. We will, therefore,
approximate the nonlinear term by the linear term Ku and develop rational methods

for estimation of an average value of K to use for any particular structure.




-~

The velocity terms are a little more difficult to handle. We begin by
determining graphically the meaning of the sum of the two velocity terms. We

note, first of all, that c, is always greater than c,.

2
Pigure A.la shows the graphical construc-

1 , generally, on the order

of two or three times as great as Cye
tion of the vector representing the sum of the two velocity terms. It is seen
that in general this sum will have a numerical magnitude different than that

.

of é'and that the direction of the resulting vector will differ from z. In
Figure A.lb the two wave velocities N and s have been replaced by some average
wave velocity ¢ such that the length of the resulting vector has the same length
as that appearing in Figure A.la. However, this approximation ylelds a resultant
having the same direction as the vector é. Now, in general, for a normal mode,
the angle g may vary between zero and 90° for different locatiéns oﬁA£ﬂérm6de§
however, at the points where the angle B is 90° the length of the vector é is a

minimum and at the point where B is zero the length of z is a maximum. Further,

a little trigonometry discloses that the maximum value possible for the angle 7y

Beng . L3 et

is about 18-1/2° for which its cosine is about .95. This occurs for a ratio of
2; = L. PFor the more likely value of ;ﬁ = 2, the maximum value ofy is less than
16°. Therefore, since the net effect of the ? terms is to remove erergy, rrom

the vibrating system we can make & ver; accurate spprozimation by substituting
cp'; and cp ﬁ'for the first derivative terms in Equations (A.16) and (A.17). In
a subseguent section the value of the adjusted ¢ is computed so that the energy
radiated by the approximate term is equal to the energy radiated by the two

accurate terms. It is found that for most conditions ¢ will be equal to more

than 90 percent of e, .

A-16
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With these approximations our working equations become

DL(u) + Ku + cpu + mu = Sl (A.18)
P, = np+Kz+cpz (A.19)

A.2.1 Physical Meaning of Terms of Fundamental Equations

The terms in Equations (A.18) and (A.19) have been grouped into components
representing the motion of the structure and components representing the moution
of the soil. The pressure ;i is a fictitious quantity, it does not represent
the pressure at the interface betwzen the structure and soil. The latter would
be just the sum of the pressure components necessary to maintain the structure
in its deformed condition, DL{u), and the inertia component, mt: All of the
other terms represent ﬁﬁe effects of the free-field pressure and soil structure
interaction, however, since Ei is immediately computable once the pressure wave
; has been established, it forms a convenient forcing function for the equation

of motion {A.18}.

Actually, the term P,is not quite as fictitious as it appears. If Equatiocn

1
(A.18) is multiplied through by ﬁ‘, the velocity of the structure, and then
integrated with respect to surface area and time, each of the resulting terms

has physical significance.

dA dt

£

t . t

JJ] pL(u) -udAdt+ K[ [ u-

oA oA (A.20)
t - v .

+cpf [ W-udhdt+m [ [ u.udAadt =
oA oA

. U dA dt

O “—

>
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-
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Thus, in Equation (A.20) the first integral represents the potential energy i
stored as strair energy in the entire structure between the times zrvo and t.

(All energies are here computed with respect to the fixed coordinate system.)

. s

The second integral represents the recoverable potential energy stored as strain

energy in the soil surrounding the structure. The third integral represents
the energyr dissipated during time zero to t in the form of a wave radiated from
the structure. The fourth integral represents the kinetic energy delivered
to the structure within the interval zero to t. Therefore, the integral on the

% right hand side of the equal sign represents the total energy delivered to the
soil-structure system during the time intervals zerc tc t. Thus, the pressure
5i represents the component of pressure around the structure available to deliver

energy to the soil-structure system during motion of the structure.

Tmmediately we see that if u and ﬁ have been estimated, Equation (A.20)
provides a useful check of the results. This is perticularly true for rigid
body moution because in this instance u and ﬁ'are invarient over the surfuce of
the structure and the first integral becomes identically zero. Then any over-
estimate of u would indicate a larger total energy on the left side of Equation

(A.20) than right, clearly a physical impossibility.

A.2.2 Range of Appl.cability of the Basic Equations

Define P, = P - Kz (A.21)

Substituting (A.21) and

u=z+w




into Equation (A.20) there results

t . t . t .
J | DL(u) -uadAdt+ [ ) Kw-uddadt+cpf [ U " UdAdt
o A oA oA

el

. t .
.udAdt =f [ Pe.ﬁdAdt (a.22)
oA

t
+m | [
oA
We see now that S; is not influenced by K and that the second integral

appears in terms of Vo ﬁ; where w is the departure of the structure motion

from the free-field motion, Z.

Equation (A.22) provides a useful means for estimating the degrce of
approximation introduced into the solution when nonlinear or nonelastic soils
are approximated by an elastic soil with suitable adjusted constants. We
observe first tnat the factor DL(E) is numerically equal to the pressure that
must be distributed over the surface of the structure in order to maintain it
in its deformed configuration. Also, we no.e that even if the structure were
highly nonlinesr there would be some other nonlinear operatur, N(Z), for instance,
that would replace the linear operator throughout the entire argument to this
point. Also, this nonlinear operator would be equivalent to the static pressure
necessary to mairtain the strucbture in its deformed condition. Now, whether
elastic or inelastic, the pressure sc computed is equal to the design pressure
for the structure, or more properly the equivelent static design pressure. For
most underground structures this equivalent static pressure is on the order of

the peak overpressure that the structure is designed to resist.




The factor Kw also represents a pressure. Thus, we can cowpare the relative
influence of the first and second integrals of Equation {A.22) Ly comparing Kw
with peak design overpressure, inasmuch as all .f the other factors in the
integrals ;re identical. If the real soil were highly nonlinear, and a linear
approximation substituted, probably the best approximation would be to take a
value of K that would yield the same energy content at a specific displacement
level as did the real soil. 1In other words, the trizngular area under the stress-
strain curve of the approximating elastic soil would be made equal to the area
under this stress-strain curve of the nonlinear soil at its expected maximum
strain. It is interesting to note that although the second integral in Equation
(A.22) represents reversible energy for the elastic case, for the inelastic case
it represents both reversible and irreversible (hysteresis) energy storedrin theﬂ
surrounding soil. 1In the elastic case all of this energy may be delivered to
the structure at some point during its vibration but for the inelastic case only
a portion could be delivered. Thus, the net effect of substituting an elastic
equivalent for & real inelastic soil i; slightly conservative because the possible
maximum relative displacement and maximum absolute acceleration of the structure

are proportional to the sguare root of the energy available to the structure.

To gein an estimate of the relative magnitude of the first two integrals we form

the ratio, k(t) t .
[ [ Kw.udAdt
o A
R(t) = F

J [DL(1). T 4A at
c A
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Since we desire order of magnitude values only we define R

o 10 vaaac
av. o A

R =

DL(u),, - [t T aa at
A
(o]

where ;;v and L(TI)av represent average values. Since the integrals are identi-

cal we can substitute

Kw Kw
av av

R = =

pL(u),, DL (W), + L (2),,

Each of the three terms in the last equaticn represent a pressure. The
individual terms become more meaningful if we separate the motions represented

into components of the structure motion.
The total structure motion u can be represented as the sum of four components

u=z +z +w +W

o] ¢ o] c
where
EB = free-fleld motion at structure centroid, constant for
entire structure
z. = zZ-z
c o
Eo = departure of structure centroid from free-field position
of structure centroid. This would be zero for a perfect
impedance match between structure and soil
w = w-w
c o

Qo

rae badee
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Now

DL (wo) = DL(zO) =0
because these represent undistorted motion.

Thus

A
=

Kw + Kw
(o] C av

DL(WC )BV + DL(ZC )B.V

Now the pressure component DL(G'C)av is equal to the static pressure required
to deform the structure an amount 5& from its rest configuration. This is on the
order of a small fraction of the peak overpressure that the structure is designed
to resist. The pressure component DL(E;>av however represents th2 pressure that
would be required to uniformly compress the structure the amount that the pressure
wave compresses the free-field. This is a very large pressure, particularly for

soft soils having a small XK.

Now, the departure of the structure centroid from the free-field centroid is
very small and becomes zero shortly after engulfment. Thus the term Kﬁs is small

in comparison with the others.

Therefore, within the accuracy being attempted we may write

Now, 3; and E; are of the same order of magnitude, probably within a factor

of 1.0 to 2.

Kz
~ c av

R ———
DL (z )
cav
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Thus, the ratio R, is of the same order of magnitude as the ratio of the

pressure required to reduce the volume of displaced soil to the pressure required

to reduce the structure volume by the same amount.
In general, this is a small number.

For instance, for a circular cylinder the pressure ratio is of the order

Pootl ~ Eg, R
= (B
eyl c
where
E = modulus of elasticity of soil

E = modulus of elasticity of c:'inder

- {R/h) = radius to thickness ratio of cylinder.
For a thin concrete silo in fairly stiff soil

Pso1l _ 50000

1
Pgy  BODOOOO * 20 "%

For a typical existing silo

Psoil _ 20000 5.l
P 000000 * e}
cyl

This lengthy discussion has been included in order that the reader might
apyreciate that the conclusion that net response is insensitivc to X, is quite
general, and does not hinge on numerical values chosen for a few specific

structures.

Therefore, we can use quite approXimate values of K without sericmsly

influencing the accuracy of results obtained. An exception to this statement

e AT R omt v et e ree




is that K should be estimated as accurately as practical when computing the rigid

body motion of the structure., However, we are fortunate in that K can be estimated

with best accuracy for this mode of motion,
It is not generally appreciated that the formula

P=pcy
is independent of any assumed stress-strain law 1f the ¢ value used 1s the
instantaneous wave velocity. Of course the wave veloclty does in general depend
upon the stress and stress~strain laws. However, for both the linear elastic
and linear viscoelastic stress-strain laws ¢ 1s constant. Therefore, 1f the
correct value of ¢ for a particular soil is determined the only errors introduced
by the veloeity terms are those following from negleet of the inclination of the
pressure vector with respect to the velocity vector. This angle (Y of Figure
A.la) is generally quite small. Further, s.nce the value of ¢ in the equation
is adjusted to radiate the correct total amount of energy during one cycle (the
rate during the cycle will not be quite correct, in general) the influcice on

structure motion 1s negligible. r

In conclusion, it is believed that Equations (A.18) and (A.19) provide nearly
the best accuracy attainable with linear equations. A slight improvement could be
made without loss of linearity if the constant K were replaced with a linear
operator but this would greatly complicate computation. Any further improvement

would introduce the considerable difficulties assoc¢iated with nonlinear equations.




A.3 Formal Solution of the Fundamental Equations

The fundamental equations are

DL(u) + Ki + cP u + mu = Sl (A.18)

P, =8 P+K +cpz (A.19)
If we have any set of orthogonal functions 5& satisfying Equation (A.6)
DL (&Tj)-mwf &5'1 (A.6)

and some set of boundary conditions and, further, if the mass per unit area of
the structure is constant then the fundamental equations can be solved by the

following set of equations

T, (t) & (A.23)
2’%;‘{31'61“ (A.24)
N, = {\ m$, - ¢ dA (A.25)
:I;i+ ST+ 9’? + DT =Ty \A.26)

If the mass per unit area were not constant we see that the velocity term in
Equation (A.26) would render the equation meaningless because all cf the other

terms in the equation are functions of time only.

It should be noted, further, that although we have chosen to carry the soilX
spring constant K as a separate factor and that although this appears in Equation

(A.26) as the ratio % there 1s no necessity that K be taken as an average -constant

A—‘?f‘
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faztor. If we were to define a new linear operator

DL (W) =D L(W) +Ku, (A.27)

then & somewhat different set of orthogonal functions ?& would be generated by
the equation analcgous to (A.6) and the factor g in (A.26) would vanish. Thus,
the only intrinsic limitation on the soil resistance factor is that it be given

by some linear operator operating on the displacement u.

There is an element of arbitrariness in the solution as presented to this
point because, as has been stated, the orthogonal functions 6& employed can be
that set of functions generaved by any arbitrarily assumed set of bcundary
conditions. One would suspect, however, that of all of the possible sets that
might be used in & given instance some particular set will result in the least
amount of computational effort required. This aspect of the theory, though of
considerable practical importance to the engineers who must carry out the computa-
tions, generally is glossed over in treatises on orthogonal functions. Therefore,
it will be developed in detail in the following paragraphs as it applies to

solution of equaiions (A.18) and (A.19).

Our general method of procedure is to divide the total motion u into a rigid

body component G} plus a deformational component Ea. We then expand both ﬁ; and

Ya

agresulting in the simplest overall solution. Thus,

in terms of the orthogonal functiions E& and determine boundary conditions for

u = U+, (A.28)
i= oo _ i =00 _

- _ - .

u 1Z=1 S; q>i+ {;1 Ti (bi (A.29)




Since G; is a rigid body motion

DL (u,) = O (A.30)

Then, substituting (A.24) and (A.29) into (A.18)

2

.. ar ' pc * . ‘\ K ! - .
(8 +T) + 5 (Sy + T ) + 5 (S; +Ty) +ay Ty = 7 (a.31)

Buppose, however, that it were permissible to set

ﬁ; =S, 6} , (A.32)

that is the entire rigid body motion could be represented by the rth mode of
the system. We know, for instance, that this is true for a complete cylinder
where the first mode represents the rigid body motion. Then for all values of

the index i, other than r, Equation (A.31) would become

- - 2, K\ m . .
Ti + p_; .L.i + (wi + .E) 'Li = T'i (1 7‘ I‘) (A'33)

In view of Equation (A.30) the frequency as given by Equation (A.6) would
be wero for Lhe il wode, 1.c.,
o =0 (4.34)
Thus for the rth mode equation (A.31) becomes
v ST LK . '
(sr + Tr) — (3, + Tr) - (sr + Tr) - (A.35)
vhere we see that for the rth mode the distinction between Sr and Tr is arbitrary

and T may be taken equal to zero, in conformity with definitions (A.28) and

(A.29) which restricted Gﬁ and the assoclated time functions Ti to deformational

motion.

A-28
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Thus, if a rigid beody mode 5; satisfying Equation (A.32) can be showa to

exist then‘all of the rigid body motion would result from a single solution of
Equation (A.26); no summations of the type indicated by Equation (A.29) would be
necessary. Inasmuch as the rigid body motion comprises by far the largest per-
centege of the total motion for sma;;\§p%;f structures, such as solid propellant
missile silos, a criterion for establishing the rigid body mode is of considerable

practical importance.
If a rigid body mode exists it will satisfy the equation

5; = Constant Vector (A.36)

then from the orthcgonality definition

[ 8.c $, maa=0, rfi (A.37)

A

E51‘-;{fﬁ_imd.A=O (A.38)
Denote

v, = Af 3, m da (A.39)

Thus, the vector E& is either equal to zero or perpendicular to the vector 5;.
Since in general the infinite set of vectors 6i will not all have the same direc-

tion cosines we can conclude

f -’fbi mdA =0 (A.40)
A

Now consider the structures to be in space, not acted upon by any exterior
forces, and in steady state vibretion in the $& mode sbout the mass center. The
mase center under these conditions is motionless. Then the structure displacement

is given by
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W = Ai by sin w, t ) (a.41)

where

Ai is arbitrary.

The velocity and structure momentum are given by

v ;a) A 51 cos w; t (A.42)

m=uv = A 51 cos , t (A.43)

where m is the momentum of an element of the structure.

Since the centroid of the structure is motionless the total momentum of

the structure, ﬁ, must be zero at all times. Thus,

M=[mdra=0 , (A.44)
A
A, @ cos W ¢ £ m ¢3 dA = 0 (A.L45)
Therefore
I m@, dA =0 (A.L6)
A i

Equation (A.46) is identical wiih Equation (A.40); thus the criterion for
the existence of a rigid body mode is that the mode should be computed for
structure vibration about its centroid without influence from external forccs

or reactions.

For self-closing shells, such as cylinders or toroids, normel modes are
customarily computed for the motionless center-of-mass condition. However, for
open shells, such as domes and arches, normal modes generally are computed for a

position-fixed boundary, the spring line of the shell, that is not in the plane

A-30
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of the mass centrold. For domes the normal modes computed for the motionless
mass centrold will not differ greatly from those appropriate to the position
fixed spring line; however, for cylindricel arches heving no tie between the
foundations the difference between these two conditions will result in marked

divergence between the mode geometries,

Use of the centroldal normal modes imposes one complicating factor on
computation of the forcing function. Since the footing bases move with respect
to the centrold during vibration of the structure the generalized forcing
functions, Tis must include the r“fect of foundation reactions. Sl as defined
by Equation (A.19) does not include this term. Essentially the intensity of
the reaction at any given instant of time would be equal to the static reaction
necessary to balance the forces distributed over the surface of the structure
at that same instsnce of time. These fqrces include the three components on

the right side of Equation (A.19).

As a practical matter when open structures, domes, arches, toroidal arches,
etc., are used, generally they are very large structures, serodynamic systems shelters,
command and communicetion centers, ete., For the large structures the rigid bedy
motion may be quite smdll in compariscon with the dAcfermelicn molion. When this
is true the functions Si will be couciderably smaller than the functions Tl of
Equation (A.3l): If the functions Si are small enough to neglect then Equation
(A.31) becomes identical to Equation (A.25) and if position-fixed boundery
normal modes were to be used the boundary reaction forces would contribute no

energy to the system and, therefore would not have to be included in the computa-

tion of the generalized forcing function. Unfortunately, no general rules can

b e e b e W:,W“MMW
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be laid down for determination of the negligibility of Si with respect Ti;

however, if the rigid body motion were to be computed using the centroidal
rigid body mode (which is just a lateral translation of the rigid structure)
and the deformational motion computed for position-fixed foundation modes the
results obtained would be conservative, i.e., the deformational moticn would be
somewhat overestimated though the degree of conservetism might be difficult

to establish.

An important characteristic of the modal motion can be determined from
the free vibration solution of Equations (A.26) (and equivalently Equaticns

(A.33) and (A.35)). If we define Qi
0 =0 4+ K (ALT)
and O the damping coefficient expressed as a fraction of critical damping
¢ = &C P
261“1 - (A.48)
then the free vibration corresponding to Equation (A.26) becomes
. . 5
2 =
T, + 26 Q. T, +Qi Ti 0 (A.49)

This is the familiar equation of the damped oscillator. Solving for éi we

obtain

o, = pim (A.50)

If éi is greater than one, the mode is over-critically damped. For the
wver-critically damped modes the response function Ti asymptotically approaches
the forcing function Ty If the latter contains no spikes “>r jumps the response

function generally remains less than the forcing function. In fact, these
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conclusions are substantially correct even for oscillatory motions occurring

when 51'18 less than one but greater than the square root of one-half.

Many methods are known for solution of equations of the general form of
Equation (A.26). One method is presented in Appendix B of this report; however,
it should be appreciated that a designer has his choice of the various analytic,

- phase plane, computer, or other methods for solution of the equation.

One problem in the solution of Equation (A.26) is evaluation of the
_ forcing function Ty A detailed general method of approach is presented in

the next section.

A.4 Evaluation of Generalized Forcing Functions

In this section a general method for evaluation of the forcing functions
Ti will be presented. The method is applicable to hand numerical, graphical,

and digital computer computation.

In the development tha* follows it is presumed that the geometry of the
normal modes 61 is known. ror most structures likely to be used the modal

components are available in the literature.

In general the ground shock wave will not be a plane wave. However, by
far the largest portion of the Lucrgy delivered to the structure will come from
the air-induced ground shock wave. This wave, strictly speaking, is not plane,
but the portion of the wave actually impinging against the structure can be
taken as plane with negligible error even for structures of a couple of hundred
feet span and waves resuliting i1rom very small bombs. It should be noted that
the air-induced wave, in general, will have at least six components, two direct

and four reflected from bedrock. The six components of the wave are:




P

The incident compression wave

The incident shear wave

The compression wave resulting from reflection of

the compression wave.

The shear wave resulting from reflection of the compression wave

The compression wave resulting from reflection of the shear wave

5.

6. The shear wave resulting from reilection of the shear wave.

These six componentvs are shown in ¥igure A.2. It should be ncied that for
a substantially level bedrock layer that the unit vectors perpendicular to the
advancing wave fronts all lie in the same vertical plane, but that the inclination

of the unit vectors with respect to horizontal varies among the components.

In a nonhomogeneous soil consisting essentially of differing horizontal
strata with fairly well defined interfaces the number of components of the ground
shock wave, each still substentially plane, arriving at the structure could be
considerably increased. In 2ddition to thege, at the position of the cloiucture,
Liiere generally will be a large number of rardomly oriented, low intensity waves
resulting from diffraction cof the air-induced ground shock wave around boulders
and other local discontinuities and a component of the directly transmitted
shock originating at the crater and propagating outward through the soil to the
structure. Since this latter component must travel through a much longer soil
path than does the air-induced shock to reach the structure the number of random
defractions that have occurred is considerably greater for the directly transmitted
component of shock than for the air-induced. In the 100 to 1000 psi range the

directly transmitted component generally appears essentially as hash consisting
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of spikes of acceleration of fairly high intensity but short duration, a fraction

of a millisecond to a few milliseconds.

It 1s not our purpose in this report to present detvailed methods for deter-
mining the free-field ground motion at the structure position. This information
is contained in & number of lengthy reports devoted exclusively to that topic.
Indeed, this is one of the major areas of research still being investigated.
However, in Section 4 of this report we do present some general rules for
estimating the order of magnitude of importance of the various components of

shock that might reach the structure.

Whatever methods or data are ed to establish the free-field motion-time
history at the structure position these data will include pressure in three
directions, particle velocity, and particle displacement, all given as functions
of time. Generally, accelerations asscciated with each wave component also are

available.

The equotion for the generalized forcing function, 7., is
i

1.
=.—J—

Ti N, 4 by <3idA (A.24)

=
x>

where

dd —

B,=T - p+ kz+opcz (A.19)
It would be possible of course to expand these expressions by the methods
of vector analysis and obtain formulas for their evaluation in terms of the scalar
magnitudes of the various vectors and the angles between these. Hovwever, a much
simpler system of evaluation can he developed from a consideration of the physical

meanings of the terms and introduction of an artifical device, an imaginary

A-36




rectangular parallelepiped circumscribed about the structure. Though this

artificislity does introduce one avenue of posslble confusion (which is discussed
subsequently) it materially simplifies the computations required to evaluate the

Ti integrals, particularly the componént due to the free field pressure tensor, ;.

Now, we note that in integral (A.2lk) the product of the pressure vector Ei
and the differentisl area, dA, is a differentisl force. The dot product of this

force with the displacement, 5}

structure by the force Ei dA moving through a distance, 5&.
in Equation (A.24) is the total energy that could be delivered to the structure .

» then is the differential energy delivered to the

Thus the integral

by the force field Ei if the latter remained constant while the structure deformed

into the displacement configuration, 5;.

Consider any shell structure. About the structure describe an imaginary
rectangular parallelepiped. It is not essential that the parsllielepiped L.ve any
particuliar Ciicavalion; LOWeVCeL, computations wiil be slupiest il ivur faces of
the parallelepiped are vertical, two of these parallel to the direction of the
advancing ground shock waves. Figure A.3 111uctrilées such a parailelepiped
circumscribed about a vertical cylinder. Three coordinate directions €, 7, and {
ar? three unit vectors £, ﬁ, and E are defined ir the figure. In Section AA of
Figure A.3 a differentisl element of area, dA, has been emphasized. A pressure
vector Ei and a displecement vector 6 act on the area dA. For clarity these are

shown in the f,'ﬁ'plane though this is not essential.

Now if both the force vector, Ei, and the displacement vector, EL are
resolved into their components in the £, 7, and { directions the results are

as shown in the figure (only the £ and 7 components are shown). Thus the

iar s o R AR e it e
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energy delivered to the element dA is equal to the sums of the energies delivered
by the components of the pressure vector perpendicular to the faces of the
parellelepiped acting through the projections of the displacement volume on the

same faces.

The vectors kz and Fc? present no problems in resolution into their

components on the faces of the parallelepiped.

The tensor ; presents a somewhat different problem. Though the vector

n - E is very simple to represent symbolically its actual numerical computation
can become quite tedious. It turns out that this computation need not be carried
out. Figure A.4 shows a wave front and also a differential element of soil behind
the wave front. TL components of pressure acting on the diffcrential element of
soll are shown. Generally the components shown as pb and P, of Figure A.4 are
equal but this is not necessarily true. The Mohr's cycle for the pressure in the
Tl { vplane also is given on Figure A.h, and the component of pressure ; appearing
on the vertical face of the parallelepiped ABCD is shown as 5. The horizontal
component of .this in the n direction ic shown as p - 1. A factor X\ is defined on
the Figure where APy is e&ﬁéi to p - Eﬂ Now since beiiind the wave front, Pas Py
and P, bear a constant relationship to each other the factor A is a constant
applicable tc planes ABCD and EFGH. It should be noted that the pressure p * 7
appearing on plane in ABCD, is the same in numerical magnitude as that appearing
on the plane EFGH, other conditions being equal. Thus the pressure at any point
on plane ABCD or EFGH is Jjust the wave pressure pa multiplied by a constant factor

xn which is easily determinable in any specific instance. Further, if the ground

pressure wave decays as a function of time the pressure on a vertical plane
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perpendicular to the 7) axis at anv given instant is equal to the pressure Py
existing at that instant multiplied by xn . The:kn factor is neither position
nor time dependent for aiy given plane wave. Factorsxg and.]kc can similarly

be defined for the other four faces of the parallelepiped.

Figure A.5 shows a similar construction for a shear wave. It should be noted
that the shear wave has no component on planes ABFE and DCGH. ) factors for

these waves can be defined similarly to those for the compression waves.

The time factor involved in the wave motion has not yet been considered.
Figure A.6 shows a section of the cylinder of Figure A.3 iaken parallel to the
7, € axes. A compression wave is shown during the period of engulfment. Now,
it should be carefully observed that although the computations are carried out
by applying pressure components to the surfaces of the parallelepiped the varia-
tion of pressure component versus time on each element of the modal displacement
component on the parallelepiped is identical with the pressure versus time at the
element of structure surface projected on the faces of the parallelepiped, e.g.,
pressure on element da3 at time % is equal to the component of pressure on

~

element dA3 at time t projected perpendicular to plane ABCD.

Thus for the instant depicted in Figure A.6 if the pressure versus time

curve is represented p(t), where time is taken as zero at the wave front, and
~

by p, we have

if we denote the component of pressure at element dal 1

P, = Projection P(0)
~ (A.51)
P, = Projection p(0)

A-L1
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P; = Projection P(%). (A.52) :
The distance, s, is measured perpendicular to the plane of the wave front.

In summery, the integral (A.24k) can be evaluated as follows:

1. For the ith mode & compute the norm N,.

2. Circumscribe an imaginary parallelepiped about the structure.

3. Impose the disploccment of a normal mode upon the structure
and translate components of this deformation onto the six faces

- ' - of the parallelepiped. These, then, will appear as relief maps.

L, Divide the facec of the parallelepiped into a grid of small
elements (acceptable accuracy generally can be obtained with a

course grid of four or five elements in each direction).
5. Determine the time lag for each element.

6. Determine the product or pressure components and volume for each

element and each of three components of pressure.

o
"*éﬁ%” Te Sum tko veloes Por all elements at specific time instants and

divide by the norm Ni'

8. Plot the results as a function of time. This is the function

T -
i

The actual computation outlined in the previous eight steps becomes a matter
of bookkeeping and for different waves and structure characteristics differing
techniques will be most expeditious. Several general characteristics that can be

used to simplify the overall procedure will be enumerated.

. A-liky
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1. For plane waves the factor pc; is equal in numerical magnitude to
pa of the pressure tensor; however, whereas the latter is compression
on both the windward wnl leeward faces of the structure, i.e., plane
ARCD &and plane EFGH, the pcé term is compression on the windward face
and tension on the leeward face. The direction of é does not change
as it passes the structure. Also it should be noted that the factor
FCé contributes no component of pressure to planes ABFE and DCGH if

they have been oriented as suggested.

P

The factor Kz produces a compressicn stress on planes ABCD and AEHD.
It produces a tension stress on planes EFGH and BFGC; it produces

no s*ress on planes ABFE and DICGH.

3. If the structure is subjected to more than a single wave generally

the simplest procedure is to compute the effects of each wave

. separately and then sum the results in the last step.

L, If mor: than a single mode is to be investigated all factors for the
various modes, except the displacement factors Gfi . ﬁ da, for instance)

are identical for the several modes.

5. For rigid body motion the "relief map" on planes ABCD, EFGH, AEHD,
and DFGC represent just displacements of the planes along their normals.

The planes ABFE and DCGH, contribute zero to the rigid body motion.

6. Each component of the rigid body motion is orthogonal to all of the

other modes of the system and, therefore, may be handled separately.

The reader may well question whether the detailed calculations outlined above

are justified In view of the inherent inaccuracy of input data. Generally they
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will not be justifiable. However, the general characterisitics of the modes and
essential geometric relations presented can be used in specific instances to
delincate which of the input wave components are significant, which can be
neglected (generally all three shear components and the shear reflection induced
compression components), and to establish the cardinal characteristics of the
forcing functions T, such as rise time, peak value, &nd decay rate. Further,
rough estimates of the peak amplitides and rise times of the higher order modes
can be determined generally with the end result that the higher order modes can

be neglected.

A.5 Coupled Modes

In reality the modes of the system that we have approximated by Equations
(A.18) and (A.19) are coupled, the coupling being introduced by the two first

time derivative terms of Equation (A.16).

In this section we will develop the theory of coupled moles for this general
system. The results indicate that the simplifications made are acceptable from a

practical standpoint. Further, the theory provides the necessary corrections for

the rare instances where the modal coupling must be considered.

If we make the simplification that the nonlinear resistance term kF(;) can

be replaced by the term K Equation (A.16) becomes

KL(E)+K(E)+clpHE s+ c2p~2§ « 4+ mu

=n -+ p+ kz+ c,p nz - n + cyp Lz -}
We now define two vectors y, and
u z
where - ¢ - - S o - s
Yy T nu-cnt-= pue p-u (A.54)
and ) c . e
- l - - - 2 -— - - o )
¢, =T"PBz o nt = gz -z (A.55

A-hE
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Referring to Figure A.l vwe see that pc 1,_'/” and pc J’z are the vector differences

between Equation (A.18) and (A.19) and the accurate Equation (A.53).

Making this substitution and shifting all correction terms to the right side

of the equal sign, Equation (A.53) becomes

DL(u) + Ki+ cou +mu =1 - p + Kz + cpz

.

+ ¥, - el (A.56)
DL(u) + Ku + U + mu = by ! cpf, - %) (A.57)

Since z;z is defined in terms of the input parameters it is immediately
computable so we can simplify the appearance of Equation (A.57) slightly by
defining

- .= -
By’ =P+ oy, (A.58)
Then

DL(u) + K(u)+ cpﬁ + mﬁ =p' - cp;zﬁu (A.59)

Equation (A.59) is of the same form as Equation (A.18) with the {(,'u term added.

3 ! = .].'._ D' @
Define T, N ) P,'" ¢ dA (A.60)
il
Then
_ i=ew
LN T !

Substitute Equations (A.6), (A.23), (A.54) and (A.61) into Equation {A.59).
Divide through by m, The result is

i= o

: : 2 Ky, .= .
2 R JERE LAY
i=e i= e @ cl___ - % __ - .
5‘1 ry 9 - 12-:-1 w Loy Yoy 4 eyl Ty (A.62)
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Equations (A.66) can be solved by successive approximations. At least five

conclusions can be drawn f:om Equations (A.65) and (A.66).

1.

The coupling factors remove energy from each mode and deliver it

to all other modes.

The coupling between modes is a function of the lateral (as opposed
to normal) motions of the modes. (The amplitudes of these are

invariably small fractions of the normal components of motion.)

The numerical values of the factors within the brackets are small
and decrease rapidly with ircreasing modal index. The values are
the largest for right circular cylinders. Even for this case the
coupling factor between the first and second deformational modes

is less than 3%.

For tne Tj monotonically approaching zero the coupling of energy to

other modes is very small (less than 1% total for the first 10 modes).

If damping (55) is very small and if the Ti are approximately cyclic,
over a period of time considerably energy can be interchanged between

modes.

We conclude therefore that the simplification introduced in the previous

subsections will not materially affect computed results for the heavily damped

underground structures.

A development similar to the above can be carried ocut when the mass of the

structure varies from peint to point.

1>
]
-
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A.6 Natural Frequency

In order to use the material presented in this chapter it is necessary to
know or determine the geometries of the normal modes $i and the associated

natural frequencies.

In theory these can be obtained by solution of Equation (A.6) together

with the boundary equations

DL('q?i) = o, {51 (A.6)

Bn(ag) =0 (n=1,2..)

These equations are deceptively simple. Actually the operator L( ) may be
a complex differential expression and in fact, since actual numerical work must
generally be carried out for tre vector functions in terms of their components
Equation (A.6) generally must be replaced by two or three scalar equations that

are Interdependent. The boundary equations are similarly multiplied in numbher.

We are fortunate in that most of the structure types of interest have
already been subjected to such analysis and as a result the frequencies and

modal geometries (generally, the components cf the modes) are known.

If a structure having geometry significantly different than those for
which modal data exists must be analyzed by the r~rmal mode method the modal
geometries and frequencies can be determined by approximate methods. Tue

determination need not be highly accurate.

A-TO
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APPENDIX B

A NUMERICAL METHOD OF SOLUTION
OF THE RESPONSE EQUATION

A method for solving equations of the fornm

»

T 26 2
{?+§- T+ T = 7 (B.1)

is desired (Note T is equivalent to TA}z of Section 5 and Appendix A. In

this appendix it is presumed to be a known function of time.

We have the initial conditions that s

T (0) =0 (B.2)
T (0) =0
7 {(0) =0
Integrating once
i, 08 T t A
S+ TH[ Tat =/ Tde (B.3)
Q 0 o .

Now suppose that the time axis were divided into a number of equal incre-
ments At. We order the increments from zero to m with zero at the origin. Also
~ A

we denote the values of T and7 at the end of the nth increment by Tn and Tn.

With these definitions we can approximate Equation (B.3) by

Tn+l - Tn-l 25Tn Tl i=n [-Tl i=n A
, et s gt 2 onleae| oz ol (B
207 At

M n

B-1




If we denote

OQAt = As

we have for all n greater than zero

_ (AS)E ~ 2 i=n

-4 As T +T
n n-

L

For n = O we obtain for Tl

¢ 2
T, (Bs)

1 (As)2 + Lofas) + 2

Equation (B.6) can be simplified for computation

Denote
Cor1 " T ~ T
then
c., =208 [r. -T)
nt+l n n
- (Wns + 1)(Tn’Tn-1)
+ Ty - Tpop)
This can be rewritten
C - 2(as)? [?r -7 ]
n+l n n

- (Bas+l) C +C

B-2

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)




In this scheme

~ 2
c, =T, = T;(AS) (B.11)
1 © (As) + W3(As) + 2

c, =% As)° (;l - ¢)) - (Was+1) c (B.12)

Table B.l shows one setup for the computations.
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